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Energy-conservative implicit integration schemes for the Fokker–Planck transport
equation in multidimensional geometries require inverting a dense, non-symmetric
matrix (Jacobian), which is very expensive to store and solve using standard solvers.
However, these limitations can be overcome with Newton–Krylov iterative tech-
niques, since they can be implementedJacobian-free(the Jacobian matrix from
Newton’s algorithm is never formed nor stored to proceed with the iteration), and
their convergence can be accelerated bypreconditioningthe original problem. In this
document, the efficient numerical implementation of an implicit energy-conservative
scheme for multidimensional Fokker–Planck problems using multigrid-precondi-
tioned Krylov methods is discussed. Results show that multigrid preconditioning is
very effective in speeding convergence and decreasing CPU requirements, particu-
larly in fine meshes. The solver is demonstrated on grids up to 128× 128 points in
a 2D cylindrical velocity space (vr , vp) with implicit time steps of the order of the
collisional time scale of the problem,τ . The method preserves particles exactly, and
energy conservation is improved over alternative approaches, particularly in coarse
meshes. Typical errors in the total energy over a time period of 10τ remain below a
percent. c© 2000 Academic Press

Key Words:implicit plasma simulation; energy-conservative Fokker–Planck; non-
symmetric systems; preconditioned Krylov methods; multigrid methods.

1. INTRODUCTION

The Fokker–Planck equation can be shown [1] to satisfy important intrinsic symmetries
such as particle, momentum, and energy conservation, and preservation of the positivity of
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the solution. It also satisfies the H-theorem, which implies that the Maxwell–Boltzmann
distribution is the solution in thermal equilibrium. The preservation of these symmetries in
the numerical approximation to the problem is essential to model the physics adequately.
Particle conservation is straightforward to achieve numerically [2]; however, energy con-
servation is not.

Energy-conservative algorithms for Fokker–Planck problems were first addressed by
Epperlein [3], who showed that numerical energy conservation is conceptually and practi-
cally possible in one-dimensional Fokker–Planck problems for any time step size, provided
that the energy moment of the Fokker–Planck collision operator cancels numerically. How-
ever, the generalization of Epperlein’s energy-conservative method for multidimensional
Fokker–Planck problems in velocity space is non-trivial because the implicit time integration
requires inverting a dense, non-symmetric Jacobian matrix. This matrix, which stems from
the integral nature of the coefficients in the equation, is very expensive to form (the number
of operations to form it scales asO(N2), whereN is the number of unknowns) and store (it
would require 2 GB of free memory in 8-byte precision for a two-dimensional 128× 128
mesh), and its inversion is very inefficient with both stationary iterative techniques and
direct solvers.

The development of a suitable difference scheme that improves the numerical cancel-
lation of the energy moment of the Fokker–Planck collision operator in multidimensional
geometries has been successfully accomplished by the authors in Ref. [4]. It is the objec-
tive of this paper to propose a solver that deals efficiently with the dense, non-symmetric
algebraic problem that results from such formulation, with minimal storage and runtime
requirements.

The energy-conservative Fokker–Planck solver developed herein involves three differ-
ent classes of algebraic problems, namely, non-symmetric dense systems (stemming from
the Newton–Raphson algorithm), non-symmetric sparse systems, and symmetric positive
definite (SPD) sparse systems. A direct approach would be very inefficient due to the pro-
hibitive storage requirements of the dense systems and due to the inefficiency of standard
solvers (such as direct solvers or stationary iterative techniques) for large, non-symmetric
matrices. Krylov iterative methods, however, are well suited for this task [5] because of their
improved efficiency over standard solvers and because they are suitable for aJacobian-free
[6, 7] implementation of Newton’s algorithm, i.e., without ever forming or storing the
Jacobian matrix, thus alleviating storage requirements. Furthermore, convergence in Krylov
methods can be accelerated bypreconditioningthe system [8], which consists in operating
on the original matrix with the inverse of a new matrix—called a preconditioner—that,
while approximating the eigenvalue spectra of the original matrix, is easily invertible. In
this work, a sparse preconditioning matrix is formed by lagging integral information at the
previous time step [9]. An approximate inverse to this preconditioning matrix is constructed
using simple multigrid methods [10, 11]. An advantage of this technique is that it renders
the number of Krylov iterations virtually independent of the number of mesh points (as op-
posed to the power scaling typical of stationary iterative techniques). Among the available
Krylov techniques, theconjugategradient (CG) method [12] is used for SPD systems; the
generalizedminimal residuals (GMRES) method [13] is chosen for non-symmetric systems
because of its robust convergence properties, particularly in Jacobian-free applications [7].

The rest of the presentation in this paper assumes that the reader is familiar with the work
in Ref. [4], and is organized as follows. Section 2 reviews the energy-conservation issues
of the Fokker–Planck equation in a multidimensional velocity space that are crucial for
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the development of an energy-conservative solver. Section 3 discusses the time integration
technique of the governing equation to preserve both energy and particles. Section 4 deals
with the specifics of the Krylov algorithm, the Jacobian-free technique, the preconditioning
step, and the details of the numerical implementation of these techniques in this specific
application, and Section 5 presents some results to illustrate the performance and limitations
of the solver.

2. ENERGY CONSERVATION ISSUES OF THE FOKKER–PLANCK EQUATION

IN A MULTIDIMENSIONAL VELOCITY SPACE

For the purpose of studying the energy conservation numerical issues of the Fokker–
Planck equation, the convection and field transport terms present in the most general form
of the Boltzmann transport equation can be ignored (equivalent to assuming that the plasma
is field-free and spatially homogeneous). For a single species problem, this results in the
following simplified Fokker–Planck equation [4],

∂ f

∂t
= L( f ) = −0 ∂

∂v
·
[

f
∂H( f )

∂v
− 1

2

∂

∂v
·
(
∂2G( f )

∂v∂v
f

)]
= − ∂

∂v
· JFP, (1)

where0 = 4πe4λ/m2, with λ the Coulomb logarithm, ande,m the charge and mass of the
species under consideration. In Eq. (1),JFP is the Fokker–Planck flux, defined as

JFP = 0
[

f
∂H( f )

∂v
− 1

2

∂

∂v
·
(
∂2G( f )

∂v∂v
f

)]
which is formed by a friction term (proportional tof ) and a diffusion term (proportional
to ∂ f/∂v). The friction and diffusion coefficients are expressed in terms of the Rosenbluth
potentials [14]H( f ) andG( f ), defined as

∇2
v H = −8π f (2)

∇2
v G = H. (3)

The Fokker–Planck flux can be reformulated as [4]

JFP = −0
[
T̄ [H, H ] + 1

2

∂

∂v
·
(
∂2G( f )

∂v∂v
f

)]
,

whereT̄ [H, H ] is a symmetric, bilinear operator onH , analogous to the Maxwell Stress
tensor in electromagnetic theory [15], given by

T̄ [H, H ] = 1

8π

[
∂H

∂v
∂H

∂v
− Ī

2

(
∂H

∂v

)2]
. (4)

Here, Ī is the identity dyadic. Then, the single species Fokker–Planck equation transforms
into

∂ f

∂t
= 0 ∂

∂v
· ∂
∂v
·
[
T̄ [H, H ] + 1

2

∂2G( f )

∂v∂v
f

]
. (5)
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This is the so-called tensor Fokker–Planck formulation [4]. Energy conservation can be
shown from this formulation directly, without reverting to an integral formulation of the
Rosenbluth potentials, as in the Landau formulation of the Fokker–Planck collision operator.
Proof is given in Ref. [4]; the parts relevant to the present discussion are reproduced below.

The rate of change of energy in an ensemble of particles distributed according tof is
given by

∂E

∂t
=
∫
Ä∞

dv
v2

2

∂ f

∂t
. (6)

In this equation,Ä∞ represents the infinite velocity domain. After introducing Eq. (5) and
integrating by parts once, Eq. (6) reads as

∂E

∂t
= −

∫
Ä∞

dv
v2

2

∂

∂v
· JFP =

∫
Ä∞

dvv · JFP

= 0
{∫

Ä∞
dvv · ∂

∂v
· T̄ [H, H ] + 1

2

∫
Ä∞

dvv · ∂
∂v
·
[
∂2G( f )

∂v∂v
f

]}
. (7)

The boundary integrals, which are zero at infinity (provided thatf,G, H are regular at
infinity), are omitted here. The second integral in Eq. (7) is integrated again by parts to find,
according to the definitions ofH andG,∫

Ä∞
dv v · ∂

∂v
·
[
∂2G( f )

∂v ∂v
f

]
= −

∫
Ä∞

dv f∇2
v G( f ) = 1

8π

∫
Ä∞

dvH∇2
v H. (8)

Then, the energy moment yields [4]

∂E

∂t
=
∫
Ä∞

dv
v2

2

∂ f

∂t
= −0

∫
Ä∞

dv
[
v · ∂
∂v
· T̄ [H, H ] + Q[H, H ]

]
= 0, (9)

where the bilinear operatorQ[H, H ] is defined as

Q[H, H ] = H∇2
v H

16π
. (10)

The result in Eq. (9) has been obtained for an infinite velocity domain, but also applies for
finite domains provided that the distribution function is absolutely confined in them [4].

Two distinct steps are identified in the numerical description of the problem, namely,
the discretization in time and the discretization in velocity space. Both steps are crucial for
the adequate preservation of particles and energy. An energy-conservative discretization
of the Fokker–Planck collision operator in velocity space has been developed for a 2D
cylindrical velocity space (vr , vp) (Fig. 1) by the authors in Ref. [4], which ensures that
Eq. (9) (necessary condition to develop an energy-conservative Fokker–Planck solver) be
satisfied numericallywithin the domain. In this scheme, the Rosenbluth potentialsH and
G have to be obtained from a second-order discretization of the differential problems

Q[H, H ] = −H f

2
(11)

∇2G = H. (12)
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FIG. 1. Diagram of the local cylindrical velocity coordinate system considered in this work. Cylindrical
symmetry is assumed. The spherical radius vector is included for reference.

Notice that the linear Poisson problem inH (Eq. (2)) has been replaced by a non-linear
differential problem in terms ofQ[H, H ] (Eq. (10)). The algebraic formulation and the
solution algorithm for these two problems is discussed in detail in Subsection 4.4.

However, the numerical cancellation of Eq. (9) fails at the boundaries. The cancellation
error has been predicted [4] to scale as∼(1/Nvlimit), whereN is the total number of mesh
points andvlimit is the velocity domain limit. The issue of the numerical propagation of these
errors in time is crucial and will be addressed in Subsection 5.3.

3. IMPLICIT ENERGY-CONSERVATIVE TIME INTEGRATION

OF THE FOKKER–PLANCK EQUATION

An efficient numerical time integration of Eq. (5) requires an implicit discretization in
time, namely

f n+1− f n

1t
= L( f n+1)+ O(1t), (13)

wheren indicates the time level in the integration procedure, andL( f ) is the Fokker–Planck
collision operator, which can be regarded as a diffusion operator in velocity space. This
formulation is absolutely stable numerically, and time steps are only limited by accuracy
considerations. However, a pure implicit formulation of the Fokker–Planck collision opera-
tor is not practical due to the non-linear coefficients, which are a function of the Rosenbluth
potentials. The simplest integration approach is to implement an iterative procedure on the
coefficients until convergence is achieved,

f n+1
k − f n

1t
= L

[
f n+1
k ,G

(
f n+1
k−1

)
, H
(

f n+1
k−1

)]
, (14)

wherek= 1, 2, . . . is the iteration level. The initial guess in this iteration,f n+1
k=0 , is obtained by

solving Eq. (14) with the Rosenbluth potentials determined with the solution at the previous
time level, f n. The discretization of Eq. (14) in velocity space results in a sparse matrix,
which does not pose storage problems and can be inverted either with standard solvers
or preconditioned Krylov methods. Although exact particle conservation is possible, large
energy errors may result from the formulation in Eq. (14) with large time steps [3]. Thus,
an alternative, energy-conservative, non-linear implicit time iteration is needed.
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3.1. Energy-Conservative Time Integration Algorithm

The distribution function at the present time level,f n+1, can be regarded as the solution
of the non-linear problem

ξ( f ) = f − f n

1t
− L( f ) = 0. (15)

The root can be obtained using the Newton–Raphson iterative technique,(
∂ξ

∂ f

)
k

( fk+1− fk) = −ξ( fk). (16)

Here,k represents the non-linear iteration level. Introductingξ( f ), and noting thatL( f ) is
bilinear on f (the friction and diffusion coefficients are linear operators onf ) and hence
( ∂L
∂ f )k fk= 2L( fk) [3], the following formulation results:

fk+1− f n

1t
=
(
∂L( f )

∂ f

)
k

fk+1− L( fk). (17)

Upon convergence, the solution at the (n+ 1) time level is obtained by identifyingf n+1=
fk+1. Equation (17) conserves energy in every step of the iteration (i.e., for anyk), as is
proven next. The energy moment of Eq. (17) is given by

1Ek+1

1t
=
∫

dv
v2

2

fk+1− f n

1t
=
∫

dv
v2

2

(
∂L( f )

∂ f

)
k

fk+1−
∫

dv
v2

2
L( fk)︸ ︷︷ ︸

=0

. (18)

The last term in this expression represents the energy moment of the Fokker–Planck col-
lision operator; although it cancels theoretically, it does not numericallyunlessan energy-
conservative discretization is used [4]. This is assumed in what follows.

By definition of the Jacobian, we can write, for an arbitrary functiong,(
∂L( f )

∂ f

)
f0

g = lim
ε→0

L( f0+ εg)− L( f0)

ε

= 0 ∂
∂v
· ∂
∂v
·
[
2T̄ [H( f0), δH(g)] + 1

2

∂2G( f0)

∂v∂v
g+ 1

2

∂2[δG(g)]

∂v∂v
f0

]
,

(19)

whereδH(g) andδG(g) are defined as

δH(g) =
(
∂H

∂ f

)
f0

g (20)

δG(g) =
(
∂G

∂ f

)
f0

g. (21)

The subscriptf0 means that the Jacobian is calculated atf = f0. In obtaining (19), the
bilinear, symmetric nature of̄T [H, H ] has been taken into account. With these results,
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Eq. (18) simplifies to

1Ek+1

1t
= 0

∫
dv
v2

2

∂

∂v
· ∂
∂v

·
[
2T̄ [H( fk), δH( fk+1)] + 1

2

∂2G( fk)

∂v∂v
fk+1+ 1

2

∂2[δG( fk+1)]

∂v∂v
fk

]
. (22)

This equation remains completely general as to howH( f ) andG( f ) are defined. In order to
find the specific constitutive relations ofδH andδG from Eqs. (20) and (21), the definitions
of H and G given in Eq. (11) and Eq. (12), respectively, must be utilized. Finding the
constitutive relation ofδG(g) is straightforward from Eq. (12) and yields

∇2
v [δG(g)] = δH(g). (23)

However, finding the constitutive relation ofδH(g) is more involved, sinceH is the root
of the following non-linear functional (Eq. (11)),

κ[H( f ), f ] = Q[H, H ] + f H

2
= 0. (24)

Differentiatingκ[H( f ), f ] with respect tof and operating the result ong, yields

dκ[H( f ), f ]

d f
g = ∂κ

∂H

∂H

∂ f
g+ ∂κ

∂ f
g = ∂κ

∂H
δH(g)+ ∂κ

∂ f
g = 0, (25)

where Eq. (20) has been used. The partial derivatives yield

∂κ

∂H
δH = Q[H, δH ] + Q[δH, H ] + f δH

2
(26)

∂κ

∂ f
g = gH

2
(27)

and, hence, the constitutive relation forδH(g) is found,

Q[H( f ), δH(g)] + Q[δH(g), H( f )] = −H( f )g+ δH(g) f

2
. (28)

For consistency, Eq. (28) has to revert back to Eq. (11) wheng≡ f . This is indeed the
case sinceH( f ) is a homogeneous function of the first degree [i.e.,H(a f )=aH( f )], and
hence

δH(g ≡ f ) =
(
∂H

∂ f

)
f

f = lim
ε→0

H [(1+ ε) f ] − H( f )

ε
= H( f ).

Equation (11) is regained upon substitution of this result in Eq. (28).
At this point, the same integrations described in Eqs. (7)–(8) are performed on Eq. (22)

to obtain

1Ek+1

1t
∝
∫

dvv · ∂
∂v
· T̄ [H( fk), δH( fk+1)] −

∫
dv

H( fk) fk+1+ δH( fk+1) fk

4
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which, by Eq. (28), can be written as

1Ek+1

1t
∝
∫

dv
[
v · ∂
∂v
· T̄ [H( fk), δH( fk+1)]

+ Q[H( fk), δH( fk+1)] + Q[δH( fk+1), H( fk)]

2

]
= 0. (29)

This result cancels by virtue of Eq. (9), true foranyfunctionH regular at infinity, and hence
true for H + δH ,∫

dv
[
v · ∂
∂v
· T̄ [H + δH, H + δH ] + Q[H + δH, H + δH ]

]
= 0 (30)

and by virtue of the bilinear nature of both̄T [H, H ] (which is symmetric) andQ[H, H ],

T̄ [H + δH, H + δH ] = T̄ [H, H ] + 2T̄ [H, δH ] + T̄ [δH, δH ]

Q[H + δH, H + δH ] = Q[H, H ] + Q[H, δH ] + Q[δH, H ] + Q[δH, δH ].

Introducing these expressions back in Eq. (30), the terms in [H, H ] and [δH, δH ] cancel
by Eq. (9), leading to the result in Eq. (29). This result implies that energy is conserved in
any step of Newton’s iteration (i.e., for any k), provided that Eq. (30) is ensured by using
an energy-conservative discretization of the Fokker–Planck collision operator [4]. Hence,
upon convergence,1En+1/1t = 0.

Thus, the implicit time discretization is only conservative if coupled with Newton’s
iterative technique. Epperlein [3] was the first to realize the properties of such a combina-
tion when he considered a linearized form of the Fokker–Planck collision operator (i.e., a
single Newton iteration) and arrived at a similar result for a spherically symmetric, one-
dimensional velocity space. Equation (29) proves this in a more general fashion, for every
step in Newton’s method, and for any geometry and dimensionality in velocity space.

Convergence in Newton’s technique is fast, provided the initial guess is within the radius
of convergence. In transient problems, the radius of convergence depends strongly on the
time step used in the integration. To ensure convergence irrespectively of the magnitude of
the time step, an adaptive time step scheme has been implemented.

3.2. Adaptive Time Step Scheme

The convergence of Newton’s iterative technique for a given problem is extremely de-
pendent on the initial condition. In particular, Newton’s method will have a quadratic
convergence rate if the initial guess for the solution falls into the radius of convergence.
However, it will take far longer—and even diverge—if the initial guess falls outside of this
radius. In the non-linear problem in Eq. (15) (for which the initial guess is the solution at the
previous time level), the radius of convergence is typically a strong function of the time step,
1t . Intuitively, in situations far from equilibrium, the larger the implicit time step1t is, the
more different the solutions at successive time levels are. In some cases, there is a threshold
in 1t above which the updated solution of the distribution function becomes negative.

In order to prevent negative solutions, a time correction scheme has been devised to damp
the Newton update, so that Newton’s method converges to a physical solution in almost any
situation, regardless of the size of1t . The essence of the technique is to introduce a time
gaugeγ that determines if1t is too large, and, if so, provides an adequate value of1t
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to proceed with the first Newton iterations. Then, as the iteration procedure advances, the
time step is slowly corrected towards the original value of1t . In this way, each step in the
iteration procedure starts with an initial guess that falls within the radius of convergence of
Newton’s algorithm.

The artificial time gaugeγ is introduced in the problem by subtractingf
γ

from the right
and left hand sides of the original problem, as

∂ f

∂t
− f

γ
= L( f )− f

γ
.

The left hand side can be grouped using the integrating factor technique to give

∂

∂t

[
e−

t
γ f
] = e−

t
γ

[
L( f )− f

γ

]
.

Integrating this expression fromtn to tn+1= tn +1t yields

e−
tn+1

γ f n+1− e−
tn

γ f n =
∫ tn+1

tn

e−
t
γ

[
L( f )− f

γ

]
. (31)

The integral can be approximated by∫ tn+1

tn

e−
t
γ

[
L( f )− f

γ

]
≈ −

[
L( f n+1)− f n+1

γ

]
γ
(

e−
tn+1

γ − e−
tn

γ

)
+ O(1t)

which leads, upon substitution in Eq. (31), to the following modified first order implicit
discretization:

f n+1− f n

η
= L( f n+1). (32)

Here,η is the modified time step,η= γ (1− e−1t/γ ), and has the limits

1t ¿ γ ⇒ η→ 1t

1t À γ ⇒ η→ γ.

Hence,η is limited byγ when1t is too large and falls back to the original1t if it is small
compared toγ .

Obviously, the effectiveness of Eq. (32) in avoiding unphysical results during Newton’s
iteration will very much depend on the wisdom in choosing the time gauge,γ . In this work,
γ is chosen as half the time step that would render a negative distribution function in an
explicit scheme,

γ = 1

2

maxi, j
(

f n
i, j

)
maxi, j

[−(∂ f/∂t)ni, j = −Li, j ( f n)
] .

Note that the expression above selects the time scales corresponding toL( f n)<0. Also,
although the two maxima may not occur exactly for the same (i, j ) node, they will be very
close since, in a diffusion problem, the largest negative rate of change usually corresponds
to the peak of the distribution. This selection has proven effective in actual simulations
(Subsection 5.2).
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The practical implementation of the adaptive time step scheme is as follows:

• First, the modified time stepη= η0 is determined as indicated above. Ifη0> 0.81t ,
then1t is used directly, without any time correction, until convergence is achieved.
• If η0< 0.81t , thenη0 is used as the time step for the first Newton iteration.
• In every subsequent Newton iteration,η in Eq. (32) is set toη= kη0, wherek is the

iteration number, untilη>0.81t .
• At this point,η is set to1t , and the Newton–Raphson algorithm proceeds until

convergence is achieved.

4. THE SOLVER ENGINE

Figure 2 presents a flow chart of the Fokker–Planck solver algorithm discussed in the
previous sections, with the crucial differential equations to be solved numerically. According
to this diagram, it is clear that the energy-conservative Fokker–Planck solver has to deal
efficiently with three different classes of algebraic problems, namely:

1. Non-symmetric dense systems, stemming from the discretization in velocity space
of Eq. (17). The Jacobian matrix(∂L/∂ f )k is non-symmetric and dense because the friction
and diffusion coefficients are integral expressions off . The solution of this system yields
the updated solution of the distribution functionf n+1.

2. Non-symmetric sparse systems, stemming from the Newton iterative treatment of
the non-linear constitutive relation ofH andδH (Eqs. (11) and (28)).

3. SPD sparse systems, stemming from the constitutive relations ofG andδG (Eqs. (12)
and (23)).

If standard solvers (such as direct solvers or stationary iterative techniques) were to be
used in this context, the problem simply could not be handled due to prohibitive stor-
age requirements and due to the inefficiency of these solvers for large, non-symmetric
matrices.

Krylov iterative methods, however, are very well suited for this task because of their im-
proved efficiency over standard solvers and because they can be implemented Jacobian-free
[6, 7], i.e., without ever forming (and storing) the Jacobian matrix. The better efficiency
of these methods in multidimensional problems can be appreciated in Table I, where the

TABLE I

Computational Complexities of Various Solvers for the Poisson

Equation in Cartesian Coordinates

Inversion method 1D 2D 3D

Direct solver O(N) O(N2) O(N7/3)
Jacobi/Gauss-Seidel O(N3) O(N2) O(N5/3)

SOR with optimalω O(N2) O(N3/2) O(N4/3)

Conjugate Gradient (CG) O(N2) O(N3/2) O(N4/3)

Preconditioned CG (w/SOR) O(N3/2) O(N5/4) O(N7/6)

Multigrid O(N) O(N) O(N)

Note.Orderings are valid as the number of unknownsN→∞ and have been
obtained based on results from Ref. [19] (for direct solvers, J/GS/SOR, and CG/
PCG) and Ref. [18] (for MG).
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FIG. 2. Flow-chart of the energy conservative algorithm, with the details of all the algebraic problems that
need to be solved, as well as the integration of the time adaptive scheme.

computational complexity (number of operations) of the Krylov CG technique (with and
without preconditioning) is compared against that of standard iterative techniques and multi-
grid (MG) methods for the reference case of the laplacian operator in Cartesian coordinates
in one, two, and three dimensions. The comparison indicates that the least efficient form of
CG (i.e., without preconditioning and without any external parameter) is already as efficient



ENERGY-CONSERVATIVE SOLVER 665

as the successive over-relaxation (SOR) technique with optimal overrelaxation parameter
ω. Furthermore, the CG’s efficiency is significantly boosted bypreconditioningthe problem
(in this case, using approximate factorization), almost matching that of MG methods.

Although, according to Table I, MG is the most efficient alternative for the Laplacian
reference case, Krylov techniques are preferred for the non-linear application of interest
here because MG cannot be implemented Jacobian-free. Thus, a MG implementation would
require forming and storing the Jacobian matrix for each Newton iteration, eliminating
the advantage. Nevertheless, the MG superior convergence properties are incorporated in
the Jacobian-free Krylov solver via the preconditioning step. The next sections explain these
concepts further. The implementation of these techniques in each of the different algebraic
problems enumerated above will also be discussed in detail.

4.1. Introduction to Krylov Methods

Krylov iterative algorithms [5] belong to the family of semi-iterative conjugate methods.
The term “semi-iterative” indicates that, while these techniques are theoretically exact in as
many iterations as the range of the matrix, they provide very good estimates much sooner.
This convergence property relates to the fact that these methods minimize the residual
between the exact and the approximate solutions at every iteration.

Krylov algorithms are conjugate in that they use conjugate vectors to solve the system.
Two vectorsdi , d j are said to be conjugate with respect to a non-singular matrixA if
di · A · d j = 0, i 6= j . If a completebasis of conjugate vectors{di }Ni=1 is known for the
matrix A, the solution to the linear systemAx= b can be trivially found in the following
way,

x =
∑

i

yi di ⇒ d j · A · x =
∑

i

yi d j · A · di = d j · b⇒ yj = d j · b
d j · A · d j

. (33)

The task of the Krylov algorithms is to build this basis as the iteration proceeds. This is
done by orthogonalizing the Krylov subspace{r0, Ar0, A2r0, . . . , Ak−1r0}, wherek is the
iteration number(1≤ k≤ N), andr0= b− Ax0 is the first residual (x0 is the initial guess).
Once the orthogonal subspace is formed, the coefficientsyj are obtained from Eq. (33),
and the approximatex is tested for convergence. This is done iteratively, until the specified
convergence criterion on the residual is met. This process can be done very efficiently for
SPD matrices (CG [12]), because the orthogonalization of the Krylov subspace can be done
from a recurrence relation involving only the last two Krylov vectors found. Furthermore,
because CG minimizes the functionalE(y)= 1

2(y, Ay) − (y, b) (which for SPD matrices
has a unique minimum aty= x), it guarantees convergence in as many iterations as the
range of the system.

However, for non-symmetric non-definite matrices the situation is more complex, because
the orthogonalization process involves multiple Krylov vectors, andE(y) is not necessarily
minimal fory= x. Among the available Krylov techniques for non-symmetric systems [16],
GMRES [13] is chosen. In GMRES, the minimization is done directly over the residual
by obtaining the{yj } coefficients from the corresponding least squares problem; hence,
convergence is guaranteed. In addition, GMRES is very robust in numerical Jacobian-free
applications [7]. The downside of GMRES is that the iteration procedure requires storingall
the previous Krylov vectors found, which may result in large storage requirements unless
the iterative procedure converges rapidly. Thus, to avoid large storage requirements, the



666 CHACÓN ET AL.

number of GMRES iterations required for convergence must be minimal, and an effective
preconditioning scheme is required.

4.2. Jacobian-Free Implementation of Krylov Methods: The Newton–Krylov Technique

As opposed to stationary iterative techniques, no matrix splitting is needed in Krylov
iterative algorithms to proceed with the iteration, and all that is required is the product of
the matrix of coefficients times a vectorx, dictated by the iterative algorithm. This property
is of particular relevance when the linear system stems from Newton’s method, as the
matrix-vector product involves a Jacobian matrix, and it can be expressed as(

∂Λ
∂y

)
y0

· x = lim
ε→0

Λ(y0+ εx)−Λ(y0)

ε
. (34)

This equation indicates that it is possible to calculate the matrix-vector product without
ever forming the Jacobian matrix (hence, the name Jacobian-free). This method is usually
referred to as the Newton–Krylov Jacobian-free technique.

In this particular implementation, the limit in Eq. (34) can be calculated theoretically
(Eq. (39) in Subsection 4.4). It is important to bear in mind, however, that in cases where
this limit can only be calculated numerically (using a small—but non-zero—ε), the accuracy
of the algorithm is limited by the error introduced in the numerical evaluation, whose leading
term is proportional to(ε|x|2). Hence, a Krylov algorithm that renders orthonormal (not just
orthogonal) Krylov vectors (such as GMRES) is essential to preserve accuracy and ensure
convergence.

4.3. The Preconditioning Step

The preconditioning step can be conceptually viewed as acting on the matrix of coeffi-
cientsA with an operatorP−1 (the preconditioner) such that either [P−1A] (left precon-
ditioning) or [AP−1] (right preconditioning) is sufficiently close to the identity matrix. In
Jacobian-free applications, right preconditioning is preferred because it can be naturally
incorporated into the Jacobian-free product as

(
∂Λ
∂y

)
y0

· P−1 · x︸ ︷︷ ︸
z

= lim
ε→0

Λ(y0+ ε
z︷ ︸︸ ︷

P−1 · x)−Λ(y0)

ε
. (35)

As Krylov techniques only require the product of the system matrix times a vector to proceed,
the preconditioning step can be implemented in the algorithm very straightforwardly and
usually boils down to solvingP · z= x [17], wherez is the unknown, andx is the Krylov
vector dictated by the algorithm. Preconditioned GMRES is also able to return orthonormal
Krylov vectors, because the Krylov vectors in this case are obtained form the Krylov
subspace{r0, Ap r0, A2

pr0, . . . , Ak−1
p r0}, whereAp= AP−1 for right preconditioning, and

Ap= P−1 A for left preconditioning.
The preconditioning matrixP has to contain significant information about the eigenvalue

spectra of the original system matrix for the preconditioning step to be effective. This means
that P may carry some of the ill-conditioned features of the original matrix—if any—and
that the difficulty in inverting the original matrix will be present in the inversion ofP
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as well, thus defeating the original purpose of preconditioning, namely, accelerating the
convergence in an inexpensive way. Fortunately, in practice, a reasonable approximation
to z will suffice for this purpose. Thus, preconditioning schemes [8] are based on “simple”
ways of obtaining this approximation, such as stationary iterative techniques (Jacobi, Gauss–
Seidel, SOR), incomplete Cholesky decompositions, or approximate multigrid methods, to
name some. The disadvantage of using such simple techniques is that their potential of
acceleration is limited by the same boundaries that limit their use as stand-alone solvers.
This is particularly important in the case of preconditioners based on stationary iterative
techniques, in which the number of iterations presents a power scaling with the number
of mesh points that renders them very inefficient when high resolution is required. For the
2D Laplacian operator, this scaling isO(N) for Jacobi or Gauss–Seidel, andO(N1/2) for
the optimized SOR method. This power scaling is a direct consequence of the fact that
stationary iterative techniques are successful in damping oscillatory harmonics of the initial
residual,er = x − P · z0, but are very inefficient in removing the smooth modes, a task to
which the iterative method devotes most of its effort. For this reason, stationary iterative
techniques are also called “smoothers.”

Multigrid preconditioners [10, 11] use the principles of MG techniques to deal with
this limitation. These techniques combine the smoothing property of stationary iterative
techniques with a suitable grid coarsening (“restriction”) algorithm, on the grounds that
smooth modes look oscillatory in a coarsened mesh. Thus, successive restriction steps,
followed by smoothing steps (to remove the oscillatory modes in the coarsened mesh), will
be very effective in removing the smooth modes from the initial residualer . This procedure
is performed recursively to a point where a direct solution is efficient, and then this exact
solution is extrapolated back (“prolongation”) through the mesh ladder, with a smoother
step between successive extrapolations, up to the original mesh. This is the simplest cycle
(so-called “V-cycle”), and it is not difficult to envision more complex cycles stemming from
the combination of partial or complete V-cycles, intermixing restriction and prolongation
steps as desired (thus resulting in W-cycles, and so on [18]).

In stand-alone MG solvers, the adequate engineering of the restriction and prolongation
algorithms is essential to preserve the accuracy and efficiency of the solution. However, as
preconditioners (i.e., accelerators of convergence of an already accurate solver), a decent
approximation to the actual solution is often enough to speed convergence. Thus, restriction
and prolongation operators constructed from simple interpolation algorithms will suffice to
greatly improve the Krylov rate of convergence. Moreover, since MG solvers damp all the
modes at similar rates, as preconditioners they will render an almost constant number of
iterations of the solver (here, CG and GMRES) with the mesh refinement.

As mentioned earlier, it is impractical to use MG methods as stand-alone solvers to deal
with the full algebraic system, because they cannot be implemented Jacobian-free. However,
as preconditioners, they only have to deal with a sparse approximation of the exact system
matrix, which can be formed and stored easily. In this paper, the preconditioning matrix is
obtained from the sparse representation of the Fokker–Planck equation outlined in Eq. (14).
Results on the performance of this preconditioner are presented in Subsection 5.1.

4.4. Implementation Details of the Energy-Conservative Solver

As stated earlier, the development of an energy-conservative solver involves dealing
with three different problems, namely, symmetric sparse, non-symmetric sparse, and
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non-symmetric dense. In the following sections, the implementation of Krylov methods
for each of these problems is discussed in detail.

To focus the discussion that follows, a 2D cylindrical velocity space with angular symme-
try is adopted. This space is spanned by(vr , vp), wherevr is the cylindricalz-axis, andvp

is the cylindricalr -axis (Fig. 1), andvr ∈ [0, vlimit ]; vp ∈ [0, vlimit ]. Here,vlimit is typically
set to several times the characteristic velocity of the problem,v0. The domain is discretized
with an integer mesh and a half mesh [4].

4.4.1. Fokker–Planck non-linear system.Once the Fokker–Planck collision operator is
discretized in a two-dimensional velocity space (i.e.,L( f ) is transformed into3i, j ( fl ,m),
according to techniques presented in Ref. [4]), the energy-conservative time discretization
scheme in Eq. (17) becomes the following algebraic equation,[

δi, j,l ,m

η
−
(
∂3i, j

∂ fl ,m

)
k

]
f k+1
l ,m =

f n
i, j

η
−3i, j

(
f k
l ,m

)
, (36)

whereη is the (corrected) time step,n is the time level index, andk in the non-linear
Newton iteration level. Here,δi, j,l ,m represents the unitary tensor (Kr¨onecker delta). De-
fine q= i + Nr ( j − 1), s= l + Nr (m− 1) (thus allocating all the mesh points of a two-
dimensional mesh in a single vector) to cast Eq. (36) in the standard form of a linear system
of equations, as [

δq,s

η
−
(
∂3q

∂ fs

)
k

]
f k+1
s = f n

q

η
−3q

(
f k
s

)
. (37)

In this equation, the matrix-vector product required to solve the system is[
δq,s

η
−
(
∂3q

∂ fs

)]
xs =

[
Ī

η
−
(
∂Λ
∂f

)]
· x = x

η
−
(
∂Λ
∂f

)
· x, (38)

whereĪ is the identity dyadic, and∂Λ/∂f is a Jacobian matrix, which is non-symmetric and
dense (because both the friction and diffusion coefficients are integral expressions off ).
Then, it is possible to calculate the matrix-vector product in Eq. (38) using the Jacobian-free
techniques introduced in Subsection 4.2. This is in fact the crucial element that allows the
development of a competitive energy-conservative Fokker–Planck solver, since forming
and storing the Jacobian matrix would be prohibitive.

As the Fokker–Planck collision operator is bilinear onf , the derivative in Eq. (34) can
be calculated theoretically (Eq. (19)), as

∂3q

∂ fs

∣∣∣∣
k

xs = 0
{
∂

∂v
· ∂
∂v
·
[
2T̄
[
H
(

f k
s

)
, δH(xs)

]+ 1

2

∂2G
(

f k
s

)
∂v∂v

xs

+ 1

2

∂2[δG(xs)]

∂v∂v
f k
s

]}
q=i+Nr ( j−1)

. (39)

The operator within curly brackets is to be discretized at the (i, j ) node in exactly the same
way as the Fokker–Planck operator itself, using an energy-conservative difference scheme
[4]. A disadvantage of the Jacobian-free product in Eq. (39) is that it requires solving for
δH(xs) andδG(xs) (i.e., two more algebraic problems) in every GMRES iteration. (Alter-
natively, one could use the outer Newton–GMRES iteration to solve the couled problem
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{ f,G, H}; this would simplify each GMRES iteration at the cost of increasing the dimen-
sion of each GMRES vector by a factor of 3.) Therefore, limiting the number of iterations
is crucial, not only to alleviate the storage requirements of GMRES, but also to preserve
the efficiency of the algorithm.

The preconditioning matrixP used for this problem is the 9-banded sparse matrix stem-
ming from a second-order discretization in velocity space of the Fokker–Planck collision
operator in the iterative formulation presented in Eq. (14), with the Rosenbluth potentials
lagged to the previous time level. This matrix is stored in diagonal sparse format. The true
Jacobian matrix is never formed.

4.4.2. Linear Poisson systems.The energy-conservative solver requires that both theG
Rosenbluth potential andδG be determined from the following partial differential equation
(Eqs. (12) and (23), respectively),

∇2Y = 1

vp
(vpYp)p + Yrr = S, (40)

whereY={G, δG} andS={H, δH}, respectively. Here, the subscriptp indicates∂/∂vp,
and the subscriptr indicates∂/∂vr . This PDE is discretized using second order (centered)
finite differences in a 5-point stencil, as

1

vp
(vpYp)p =

vp, j+ 1
2

(
(Yi, j+1− Yi, j )/1vp, j+ 1

2

)− vp, j− 1
2

(
(Yi, j − Yi, j−1)/1vp, j− 1

2

)
vp, j1vp, j

Yrr =
(
(Yi+1, j − Yi, j )/1vr,i+ 1

2

)− ((Yi, j − Yi−1, j )/1vr,i− 1
2

)
1vr,i

.

Velocity increments are defined in Ref. [4]. Asvp→ 0, the term(1/vp)(vpYp)p→ 2Ypp by
L’hospital’s rule, and is discretized with symmetric boundary conditions (i.e.,Yi, j+1=Yi, j−1

at j = 1) as

Yppi, j=1 = 2
Yi, j+1− Yi, j

1vp, j1vp, j+ 1
2

∣∣∣∣
i, j=1

.

Such discretization transforms the differential operator in Eq. (40) in aN× N non-symme-
tric 5-banded diagonal sparse matrix (withN = Nr × Np, whereNr andNp are the number
of mesh points in thevr andvp directions, respectively).

However, Krylov methods are faster and more efficient for symmetric matrices (CG can
be used instead of GMRES). The non-symmetry in the previous matrix is due to the 1/vp

coefficient, which can be removed by multiplying both sides of the discretized form of
Eq. (40) by the volume element in velocity space (given by1Ä= 2πvp, j1vp, j1vr,i for a
general mesh point; specialized expressions are needed for the boundaries and corner points
[4]). The result of this operation reads

1vr,i

[
vp, j+ 1

2

Yi, j+1− Yi, j

1vp, j+ 1
2

− vp, j− 1
2

Yi, j − Yi, j−1

1vp, j− 1
2

]

+ vp, j1vp, j

[
Yi+1, j − Yi, j

1vr,i+ 1
2

− Yi, j − Yi−1, j

1vr,i− 1
2

]
= vp, j1vp, j1vr,i Si, j .
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Clearly, the 1/vp coefficient has disappeared, and the resulting 5-banded sparse matrix is
rendered symmetric positive definite (SPD). Hence, CG is used as the solver driver. This
matrix is stored in diagonal sparse format. The preconditioning matrix is the same as the
system matrix.

4.4.3. Non-linear Poisson system.The problem for theH Rosenbluth potential is more
involved, since the following non-linear PDE [4] has to be solved numerically:

Q[H, H ] = 1

16π

[
(Hr H)r − H2

r + 2
H

vp
(vpHp)p + H2

p −
1

vp
(vpHpH)p

]
= − f H

2
.

This equation has to be solved iteratively by Newton’s method, applied to the following
non-linear functional (recall Eq. (24)):

κ[H( f )] = Q[H, H ] + f H

2
.

The root of this function solves the non-linear Poisson problem above. Here,H is the only
unknown (f is known). Then, the Newton iterative method reads

∂κ

∂H

∣∣∣∣
Hk

1H = −κ(Hk), (41)

where1H = Hk+1−Hk, andk represents the non-linear iteration level. Hence, the solution
of the H problem requires a Krylov solve (to invert the linear algebraic system that stems
from the discretization of Eq. (41)) within each Newton iteration.

Since the linear algebraic system stems from Newton’s method, the matrix-vector product
in the Krylov iteration of Eq. (41) can be performed using Jacobian-free techniques, and
yields, for a generic functiong,

∂κ

∂H

∣∣∣∣
Hk

g = Q[Hk, g] + Q[g, Hk] + f g

2

= 1

16π

[(
Hk

r g
)

r
− Hk

r gr + 2
Hk

vp
(vpgp)p + Hk

pgp − 1

vp

(
vpHk

pg
)

p

]
+ 1

16π

[(
gr Hk

)
r
− Hk

r gr + 2
g

vp

(
vpHk

p

)
p
+ Hk

pgp − 1

vp

(
vpgpHk

)
p

]
+ f g

2
.

(42)

This equation is to be discretized with second order (centered) finite differences. As opposed
to the linear problem, this non-linear problem cannot be symmetrized. Hence, GMRES has
to be used as the Krylov driver. The exact Jacobian matrix (which is a 5-banded diagonal
matrix) is used to precondition the system.

Minimizing the number of iterations in this non-linear problem is crucial for the efficiency
of the solver, in terms of both memory and CPU. Since inverting a linear, symmetric problem
is preferable (because CG is used), the linearH problem is solved first (in the same way as the
G problem) to provide an accurate initial guess for the Newton iteration (the solutions of the
non-linearH problem and the linearH problem differ only by truncation errors [4]). With
this initial guess, Newton’s algorithm typically converges in less than five iterations despite
stringent convergence tolerances(‖κ(Hk)‖2< 10−9, whereκ is the vector of residuals in
thekth Newton iteration, Eq. (41)).
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4.4.4. Constitutive equation forδH. The constitutive relation forδH is given in Eq. (28),
reproduced as

Q[H( f ), δH(g)] + Q[δH(g), H( f )] = −H( f )g+ δH(g) f

2
,

wereδH(g)= ( ∂H
∂ f ) f g. Using Eq. (26), this equation can be rearranged as

∂κ

∂H

∣∣∣∣
f

δH(g) = −H( f )g

2
. (43)

This equation is formally identical to the Newton iteration step in Eq. (41). Hence, the same
techniques are used for its inversion.

5. RESULTS

The motivation of this work is the development of an efficient, robust, energy-conservative
Fokker–Planck solver. The previous discussion shows that this is theoretically possible
and implies that it is numerically tractable if MG-preconditioned Krylov techniques are
employed. This section discusses the actual performance and limitations of the solver.

In order to test this formulation under extreme conditions, two distinct initial distribution
functions will be considered for the numerical experiments:

1. A radial beam, characterized by a distribution functionf (vr , vp) with strong an-
gular dependence. The beam is centered onvr = 0.5 andvp= 0, with beam temperature
Tb= 8.89 · 10−3 and average energy〈E〉=0.138.

2. A symmetric beam, with no angular dependence [i.e.,f (vr , vp)= f (v)]. The beam

is centered onv=
√
v2

r + v2
p= 0.5, with temperatureTb= 8.98 · 10−3 and average energy

〈E〉=0.147.

Velocities are in units of an arbitrary reference velocity,v0; energies are in units ofv2
0. Both

beams are localized in the uniformly discretized velocity subdomain and are depicted in
Fig. 3.

5.1. Effectiveness of the MG Preconditioner

The efficiency of the solver largely depends on the efficiency of the iterative inversion
technique. Table I shows that unpreconditioned Krylov techniques are already as efficient
as the most efficient of alternative methods for multidimensional problems. Preconditioning
improves performance further, but the degree of improvement very much depends on the
particular choice of the preconditioning technique.

MG preconditioning is chosen for this application and, with the exception of the smoother,
we employ the simple MG method developed in [11]. Piecewise constant interpolation is
used for the restriction and prolongation steps. The mesh coarsening factor is 2. Each
preconditioning call performs two consecutive V-cycles of (r − 2) levels. Not more than
(r − 2) levels in a 2r × 2r mesh may be considered for the restriction step, to ensure that
a nine-point stencil (3× 3) required to discretize the Fokker–Planck collision operator is
contained in the coarsest mesh. Instead of solving the problem exactly at the coarsest level,
an approximate solution is found with the smoother. The smoother consists of five passes
of the symmetric Gauss–Seidel (SGS) iterative scheme, which achieves a symmetric it-
eration matrix by performing a forward and a backward pass per iteration step. This is
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FIG. 3. Initial distribution functions employed in the assessment of the properties of the solver. Velocity units
are arbitrary. Some reference values of the distribution function at selected contours are indicated; contours are
equally spaced.

beneficial for non-symmetric systems (since it tends to symmetrize the Gauss–Seidel itera-
tion, hence improving convergence [17]) and is crucial to grant a SPD preconditioner in CG.
The SGS technique will also be implemented as a stand-alone preconditioner (consisting
of ten SGS iterations), to gauge the effectiveness of the MG preconditioner.

The numerical experiments are performed in a velocity domain limited byvr , vp ∈
[0,
√

2], uniformly discretized with a 2r × 2r mesh. Two different time steps,1t = 0.01τ
and1t = τ , are considered to address the impact of large time steps in the effective-
ness of the preconditioner. Here,τ is the collisional time scale of the problem, given
by τ = 4π(Ze)4nλ/m2v3

0, whereZe is the charge of the species under consideration,m is
the mass,n is the density of the plasma,λ is the Coulomb logarithm, andv0 is the char-
acteristic speed in the system. The Fokker–Planck collision operator is linearized [3] to
prevent Newton’s method and the time-adaptive scheme from obscuring the effectiveness
of the preconditioner for the large time step case. The initial distribution function for the
numerical experiments is chosen so that no unphysical results are obtained with the lin-
earized Fokker–Planck solver for the large time step (Subsection 5.2). The symmetric beam
in Fig. 3 satisfies this requirement.
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Three different quantities are monitored as the mesh sizer is varied: the number of
Fokker–Planck iterations per time step, the total number of Poisson iterations per Fokker–
Planck iteration (including the linear and non-linear systems), and the cumulative CPU time
in an HP9000/735 workstation over the first three time steps, in seconds. The latter is the
most important figure of merit to measure the effectiveness of MG. Results are depicted in
Fig. 4 and suggest the following observations:

• The number of iterations in the Fokker–Planck system is strongly dependent on the
magnitude of the time step. Thus, although MG and SGS perform similarly for small time

FIG. 4. Comparison of the performance of the SGS preconditioner vs the MG preconditioner in terms of the
mesh refinement (given byr = 5, 6, 7 in a 2r × 2r mesh) and magnitude of the time step [1t = 0.01τ (left column)
and1t = τ (right column)]. The comparison is done for the number of Fokker–Planck iterations per time step
(a),(d); the number of Poisson iterations per Fokker–Planck iteration (b),(e); and the cumulative CPU time in an
HP9000/735 workstation in seconds (c),(f ) in the first three time steps.
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steps (Fig. 4a), MG clearly outperforms SGS for large time steps (Fig. 4d). Note that MG
renders the number of Fokker–Planck iterations almost constant with the mesh refinement
(as expected), and that its performance is only weakly dependent on the time step size.
• As for the number of Poisson iterations per Fokker–Planck iteration, the superiority

of MG is evident for both the small and large time steps (Figs. 4b, 4e). Again, MG keeps
the number of iterations almost constant with the mesh size and the time step.
• The results for the CPU time provide crucial insight about the effectiveness of MG

preconditioning techniques. According to Figs. 4c and 4f, although MG is generally faster
than SGS, it only outperforms SGS significantly in fine meshes, and the improvement is
greater for large time steps (almost an order of magnitude for the 27× 27 mesh and1t = τ).
This occurs in spite of the significant improvement that MG introduces in the number of
Fokker–Planck and Poisson iterations for all mesh refinements, particularly for1t = τ . The
reason is that SGS is much cheaper (CPU-wise) per preconditioning call than MG, and this
somewhat offsets the effect of the reduction of the number of iterations in the CPU time.

These results indicate that, although the MG preconditioner is effective for any mesh re-
finement and any time step, it is particularly suited for fine meshes and large time steps. The
results also confirm the ability of Krylov techniques to deal with the variety of algebraic
systems present (and particularly with the dense Fokker–Planck system), as indicated by
the relatively small number of iterations and short CPU times in all cases.

5.2. Effectiveness of the Time Adaptive Scheme

A robust solver gives meaningful answers for extreme choices of mesh refinements and
time step sizes. Although numerical instabilities are not an issue here due to the implicitness
of the time integration and the nature of the problem at hand, convergence problems may
arise in the Newton–Raphson non-linear algorithm for the time integration. Large time steps
are the most critical, since Newton’s radius of convergence varies inversely with the time
step.

An adaptive time step scheme has been implemented (Subsection 3.2) to avoid divergence
of Newton’s method in these situations. Its effectiveness is analyzed here by monitoring the
performance of the solver for the particular case of the radial beam in Fig. 3. The velocity
domain is the same as in the previous section, uniformly discretized with a 32× 32 mesh.
It is of interest to find the solution of the fullnon-linearFokker–Planck collision operator
at t = 1.5τ with a single time step of size1t = 1.5τ , with and without the aid of the time
adaptive scheme.

The solution of the problemwith the time adaptive scheme is shown in Fig. 5a. The
different time steps that the time adaptive scheme has selected along the Newton iteration,
together with the magnitude of the Newton residual, are shown in Table II. The time adaptive
scheme succeeds in finding an initial time step that places the initial distribution function
within the Newton radius of convergence(1t = 0.13τ). Subsequent change of the time step
in each iteration does not preclude convergence, as indicated by the decreasing trend of the
Newton residual. It does preclude, however, the quadratic convergence rate characteristic
of Newton’s method, which only appears when the time step remains fixed (i.e., after the
target time step1t = 1.5τ is reached).

In the case of solvingwithout the time adaptive scheme, the Newton iteration does not
converge, as shown in Table III. The reason for this divergence can be found by looking
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TABLE II

Evolution of the Newton Residual of the Fokker–Planck Non-

linear System for a Single Time Step∆t = 1.5τ (where τ Is

the Collision Time Scale), Using the Time-Adaptive Scheme to

Avoid Unphysical Solutions

Newton it. Adaptive time step Magnitude of residual‖er ‖2

1 0.13τ 634.16
2 0.26τ 119.2
3 0.39τ 73.48
4 0.52τ 49.56
5 0.65τ 36.34
6 0.78τ 27.94
7 0.91τ 22.15
8 1.03τ 18.1
9 1.16τ 15.0

10 1.5τ 29.52
11 1.5τ 4.61
12 1.5τ 3.32 · 10−2

13 1.5τ 8.6 · 10−5

FIG. 5. Results of the EC solver for the radial test case att = 1.5τ , obtained by (a) solving the full non-linear
Fokker–Planck equation with the adaptive time-step scheme and1t = 1.5τ , (b) solving only for the first Newton
iteration with1t = 1.5τ . Some reference values of the distribution function at selected contours are indicated;
contours are equally spaced.
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TABLE III

Evolution of the Newton Residual of the Fokker–

Planck Non-linear System for a Single Time Step

∆t = 1.5τ (whereτ Is the Collision Time Scale), With-

out Using the Time-Adaptive Scheme

Newton it. Magnitude of residual‖er ‖2

1 634.2
2 501544.0
3 No convergence in GMRES

at the distribution function after the first Newton iteration, depicted in Fig. 5b. This plot
shows that the resulting distribution function is negative, which indicates that the original
time step1t = 1.5τ places this initial distribution function out of the radius of convergence
of the Newton–Raphson algorithm. Note that, ultimately, the failure of the algorithm does
not come from a divergent Newton algorithm, but from the negativity of the distribution
function, which results in an ill-conditioned linear system and GMRES fails to converge.

These results indicate that the time adaptive technique is successful in ensuring con-
vergence for exceptionally large time steps, thus improving the robustness of the solver.

5.3. Energy Conservation in the Solver

The issue of energy conservation is fundamental and has been the driver for the whole
development presented herein. As shown in Subsection 3.1, the non-linear time integration
is energy conservative provided that the discretization of the Fokker–Planck operator in
velocity space assures the cancellation of the energy moment. Although it is possible to

FIG. 6. Sketch of a combined uniform-geometric discretization mesh, with additional accuracy provided at
the outer boundaries.
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develop a difference scheme that dramatically improves this cancellation [4], exact numer-
ical cancellation of the energy moment is not possible due to errors at the boundaries of
a finite velocity domain. Thus, it is crucial to ascertain how this error propagates along
the time integration, whether the energy conservative solver provides better results than
other implicit iterative solvers, and what is the cost—in terms of CPU time—of the energy
conservative approach vs. other implementations.

In order to gauge the performance of the energy-conservative (EC) scheme, a particle con-
servative, non-energy-conservative (NEC) implicit iterative solver has been implemented.
The NEC solver employs the iterative approach outlined in Eq. (14), with the collision
operator discretized in velocity space with a centered finite difference scheme [4]. To en-
sure a fair comparison, MG-preconditioned Krylov techniques are also used in the NEC
(MG-preconditioned GMRES applied to Eq. (14) is by itself a new and useful contribution).

FIG. 7. Global energy error of the energy-conservative (EC) solver and the non-conservative solver (NEC) in
terms of the mesh refinement (given byr = 5, 6, 7 in a 2r × 2r mesh) in a period of 5τ , for both (a) the symmetric
and (b) the radial initial distribution functions.
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FIG. 8. Global energy error of the energy-conservative (EC) solver and the non-conservative solver (NEC) in
terms of the mesh refinement (given byr = 5, 6, 7 in a 2r × 2r mesh) in a period of 10τ , for both (a) the symmetric
and (6) the radial initial distribution functions.

For adequate energy conservation, the 2D cylindrical velocity domain is discretized [4]
with a combined uniform-geometric mesh (Fig. 6) with 2r points per direction, split in a
1
2/

1
2 proportion between the uniform and geometric regions. The uniform mesh region is

limited byvr , vp ∈ [0,
√

2]; the geometric mesh region is limited byvr , vp ∈ [
√

2, vlimit ].
Simulations are performed for both the symmetric and the radial initial distribution func-

tions (Fig. 3). Two magnitudes are monitored, namely, the cumulative energy error in time
periods of 5τ (the time required for the system to reach LTE) and 10τ , and the CPU time
spent in the simulation. The EC approach solves the linearized Fokker–Planck operator (first
Newton iteration); the NEC approach performs ten iterations on the Rosenbluth potentials
per time step. The time step is1t = 0.2τ in the radial beam case (to prevent unphysical
results), and1t = τ in the symmetric beam case. The velocity domain limit is taken as
vlimit = 10 unless otherwise specified. Convergence tolerances in the iterative solvers are
set to‖er ‖2< 10−7, whereer is the vector of residuals. The MG preconditioner in these
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FIG. 9. Time histories of the cumulative energy error1E(%) in the EC and NEC solvers, for the radial initial
distribution function withvlimit = 10 in (a) a 32× 32 mesh, and (b) a 128× 128 mesh.

particular simulations employs three consecutive V-cycles with two SGS passes per smoother
call.

The results for the cumulative energy error (defined as1E(%)= 100× |(E f −E0)/E0|,
whereE0, E f are the initial and final energies, respectively) of the EC and NEC solvers with
both the radial and the symmetric initial distribution functions are depicted in Fig. 7 (for
t = 5τ ) and Fig. 8 (fort = 10τ ). Both figures present the same patterns, although magnitudes
of relative errors are different. The scaling of the energy error is of particular interest. The
energy error in the NEC solver shows a 1/N scaling (whereN= 2r × 2r is the number of
mesh points), consistent with a second order accurate difference scheme. On the contrary,
the energy error from the EC solver presents virtually no scaling with the mesh refinement
(in contradiction with the1

N scaling found in Ref. [4] for the error in the cancellation of
the energy moment). The discrepancy originates in the fact that the boundary terms of the
integral in Eq. (29) are different from the boundary terms of the energy moment integral in
Eq. (9) and do not follow the same scaling laws. Consequently, energy conservation in the
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FIG. 10. The CPU times of the EC and NEC solvers corresponding to at = 10τ run, for both (a) the symmetric
and (b) the radial initial distribution functions, and for different mesh refinementsN= 2r × 2r (r = 5, 6, 7).

EC solver is better than in the NEC solver in coarse meshes (by an order of magnitude for
the 25× 25 mesh), but the advantage is lost in fine meshes.

The energy error in the EC solver does show a 1/vlimit scaling (as indicated by the results
for vlimit = 10, 30). However,vlimit is effectively bound by efficiency considerations (MG
preconditioning works best with uniform or nearly uniform meshes) as well as accuracy
considerations (the 1/vlimit scaling is lost forvlimit sufficiently large [4]).

Time histories of the cumulative energy error1E(%) of the radial initial distribution
function with both the EC and NEC solvers are presented in Fig. 9. The cumulative energy
error is monitored up tot = 10τ . Results are plotted for a 32× 32 mesh (Fig. 9a—where the
energy discrepancy between the EC and NEC solvers is large—and for a 128× 128 mesh
(Fig. 9b—where the energy discrepancy is small. In all cases,vlimit = 10. These figures show
that, while the energy change with the EC solver evolves linearly with time at all times, the
energy change with the NEC solver behaves non-linearly during the first two collision times
(precisely when the distribution function changes more drastically towards the Maxwellian
distribution) and evolves linearly after that.
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The CPU times resulting from thet = 10τ simulations with both EC and NEC are pre-
sented in Fig. 10. Clearly, although both solvers are within the same order of magnitude,
the NEC solver outperforms the EC solver for the particular set of parameters chosen. This
is to be expected because:

1. The EC solver is effectively inverting a dense system. The fact that the EC CPU time
is within the same order of magnitude as the NEC CPU time indicates that the Jacobian-free
GMRES algorithm is successful in dealing with the dense algebraic system.

2. The NEC method also employs the same powerful iterative matrix-inversion tech-
niques, namely, MG-preconditioned GMRES. In fact, these results prove the effectiveness
of these methods in ”traditional” approaches of dealing with the implicit integration of the
Fokker–Planck transport equation.

It is of interest to note that the CPU time in both the EC solver and NEC solver scales as
O(N3/2). This observation is consistent with profiling results of the code that show that
the CPU time is dominated, for large meshes, by the calculation of the far-field boundary
conditions of the Rosenbluth potentials (procedure that scales asO(N3/2), as discussed in
Ref. [4]).

6. CONCLUSIONS

In this paper, the development of an energy-conservative solver for the multidimensional
Fokker–Planck equation has been undertaken. The solver uses the energy-conservative
difference scheme developed in Ref. [4] and is based on the coupling of the implicit time
integration with Newton’s method. Such formulation requires the inversion of dense alge-
braic systems, efficiently performed by Jacobian-free Newton–Krylov iterative methods.
These techniques are more efficient than standard techniques and avoid forming and storing
the dense matrix. The efficiency of Krylov methods can be boosted further if adequate pre-
conditioning schemes are employed. Here, multigrid preconditioning (MG) is used. Results
indicate that MG is effective for any mesh refinement and any time step and is particularly
suited for fine meshes and large time steps.

A direct use of Newton’s method in the implicit time integration does not guarantee
convergence unless the initial condition is within Newton’s radius of convergence. This, in
turn, strongly depends on the time step (large time steps correspond to smaller radii). To
ensure convergence, a time adaptive scheme has been implemented. Simulations indicate
that the scheme is successful for exceptionally large time steps.

Conservation of energy is not exact due to errors at the boundaries of finite velocity
domains. The propagation of the energy error in the energy-conservative solver (EC) has
been monitored and compared against that of a non-energy-conservative solver (NEC) for
different initial conditions. The comparison shows that EC outperforms NEC by as much
as an order of magnitude in coarser meshes, but that the advantage is lost in fine meshes.

A comparison of the CPU times for the EC and NEC solvers shows that the NEC
solver is more efficient in fine meshes. Hence, as it stands, the EC solver is the best al-
ternative to deal with problems in coarse meshes, while the NEC solver is more effective
for fine meshes. However, the fact that the CPU times of both the EC and NEC solvers
are within the same order of magnitude indicates that MG-preconditioned Jacobian-free
Newton–Krylov techniques are dealing successfully with the dense algebraic system. Hence,
future development of energy-conservative Fokker–Planck solvers in multidimensional
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geometries may only be concerned with the design of better energy-conservative difference
schemes.

The development of faster algorithms to calculate the far-field boundary conditions of
the Rosenbluth potentials (to provideO(N) scaling), as well as the improvement of the
cancellation of the boundary terms in the difference scheme [4] to provide better energy
conservation values, are still pending issues.
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