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Energy-conservative implicit integration schemes for the Fokker—Planck transport
equation in multidimensional geometries require inverting a dense, non-symmetric
matrix (Jacobian), which is very expensive to store and solve using standard solvers.
However, these limitations can be overcome with Newton—Krylov iterative tech-
niques, since they can be implementitobian-free(the Jacobian matrix from
Newton’s algorithm is never formed nor stored to proceed with the iteration), and
their convergence can be accelerategi®conditioninghe original problem. In this
document, the efficient numerical implementation of an implicit energy-conservative
scheme for multidimensional Fokker—Planck problems using multigrid-precondi-
tioned Krylov methods is discussed. Results show that multigrid preconditioning is
very effective in speeding convergence and decreasing CPU requirements, particu-
larly in fine meshes. The solver is demonstrated on grids up to<128 points in
a 2D cylindrical velocity spacey(, vp) with implicit time steps of the order of the
collisional time scale of the problem, The method preserves particles exactly, and
energy conservation is improved over alternative approaches, particularly in coarse
meshes. Typical errors in the total energy over a time period oféfain below a
percent. (© 2000 Academic Press

Key Wordsimplicit plasma simulation; energy-conservative Fokker—Planck; non-
symmetric systems; preconditioned Krylov methods; multigrid methods.

1. INTRODUCTION

The Fokker—Planck equation can be shown [1] to satisfy important intrinsic symmetri
such as particle, momentum, and energy conservation, and preservation of the positivit)
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the solution. It also satisfies the H-theorem, which implies that the Maxwell-Boltzmar
distribution is the solution in thermal equilibrium. The preservation of these symmetries
the numerical approximation to the problem is essential to model the physics adequat
Particle conservation is straightforward to achieve numerically [2]; however, energy co
servation is not.

Energy-conservative algorithms for Fokker—Planck problems were first addressed
Epperlein [3], who showed that numerical energy conservation is conceptually and pra
cally possible in one-dimensional Fokker—Planck problems for any time step size, provic
that the energy moment of the Fokker—Planck collision operator cancels numerically. Ho
ever, the generalization of Epperlein’s energy-conservative method for multidimensior
Fokker—Planck problems in velocity space is non-trivial because the implicit time integratic
requires inverting a dense, non-symmetric Jacobian matrix. This matrix, which stems frc
the integral nature of the coefficients in the equation, is very expensive to form (the numt
of operations to form it scales &(N?), whereN is the number of unknowns) and store (it
would require 2 GB of free memory in 8-byte precision for a two-dimensionalx1238
mesh), and its inversion is very inefficient with both stationary iterative techniques ar
direct solvers.

The development of a suitable difference scheme that improves the numerical can
lation of the energy moment of the Fokker—Planck collision operator in multidimension
geometries has been successfully accomplished by the authors in Ref. [4]. It is the ob
tive of this paper to propose a solver that deals efficiently with the dense, non-symmet
algebraic problem that results from such formulation, with minimal storage and runtin
requirements.

The energy-conservative Fokker—Planck solver developed herein involves three diff
ent classes of algebraic problems, namely, non-symmetric dense systems (stemming 1
the Newton—Raphson algorithm), non-symmetric sparse systems, and symmetric posi
definite (SPD) sparse systems. A direct approach would be very inefficient due to the p
hibitive storage requirements of the dense systems and due to the inefficiency of stanc
solvers (such as direct solvers or stationary iterative techniques) for large, non-symme
matrices. Krylov iterative methods, however, are well suited for this task [5] because of th
improved efficiency over standard solvers and because they are suitablatmtaan-free
[6, 7] implementation of Newton’s algorithm, i.e., without ever forming or storing the
Jacobian matrix, thus alleviating storage requirements. Furthermore, convergence in Kry
methods can be accelerateddrgconditioninghe system [8], which consists in operating
on the original matrix with the inverse of a new matrix—called a preconditioner—tha
while approximating the eigenvalue spectra of the original matrix, is easily invertible. |
this work, a sparse preconditioning matrix is formed by lagging integral information at tt
previous time step [9]. An approximate inverse to this preconditioning matrix is constructs
using simple multigrid methods [10, 11]. An advantage of this technique is that it rende
the number of Krylov iterations virtually independent of the number of mesh points (as o
posed to the power scaling typical of stationary iterative techniques). Among the availal
Krylov techniques, theonjugategradient (CG) method [12] is used for SPD systems; the
generalizedninimal residuals (GMRES) method [13] is chosen for non-symmetric system
because of its robust convergence properties, particularly in Jacobian-free applications

The rest of the presentation in this paper assumes that the reader is familiar with the w
in Ref. [4], and is organized as follows. Section 2 reviews the energy-conservation issl
of the Fokker—Planck equation in a multidimensional velocity space that are crucial f
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the development of an energy-conservative solver. Section 3 discusses the time integrs
technique of the governing equation to preserve both energy and particles. Section 4 d
with the specifics of the Krylov algorithm, the Jacobian-free technique, the preconditionit
step, and the details of the numerical implementation of these techniques in this spec
application, and Section 5 presents some results to illustrate the performance and limitati
of the solver.

2. ENERGY CONSERVATION ISSUES OF THE FOKKER-PLANCK EQUATION
IN A MULTIDIMENSIONAL VELOCITY SPACE

For the purpose of studying the energy conservation numerical issues of the Fokk
Planck equation, the convection and field transport terms present in the most general f
of the Boltzmann transport equation can be ignored (equivalent to assuming that the plas
is field-free and spatially homogeneous). For a single species problem, this results in
following simplified Fokker—Planck equation [4],

v 29v

of I oH(f) 10 (3°G(f) \] 0
at—““—‘rav[f <av8v fﬂ—‘av'JFp’ @

wherel" = 4re*A/m?, with A the Coulomb logarithm, anel m the charge and mass of the
species under consideration. In Eq. dpp is the Fokker—Planck flux, defined as

aH(f) 19 <8zG(f) fﬂ

v 24V ' ovov

Jep=T |:f
which is formed by a friction term (proportional th) and a diffusion term (proportional
to af /dv). The friction and diffusion coefficients are expressed in terms of the Rosenblu

potentials [14]H (f) andG( f), defined as

V2H = —8rf (2)
V2G = H. 3

The Fokker—Planck flux can be reformulated as [4]

_ 2
Irp = —F{T[H, Hl+ 22 (3 () f)}

29v avov

Where'IT[H, H] is a symmetric, bilinear operator dd, analogous to the Maxwell Stress
tensor in electromagnetic theory [15], given by

- 1 [oHOH | /0H\?

Here, | is the identity dyadic. Then, the single species Fokker—Planck equation transfori
into
f 9 9
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This is the so-called tensor Fokker—Planck formulation [4]. Energy conservation can
shown from this formulation directly, without reverting to an integral formulation of the
Rosenbluth potentials, as in the Landau formulation of the Fokker—Planck collision operat
Proof is given in Ref. [4]; the parts relevant to the present discussion are reproduced bel
The rate of change of energy in an ensemble of particles distributed accordingto

given by
oE v2 of
— = dv——. 6
at /Qx Vo ot ©)

In this equation§2, represents the infinite velocity domain. After introducing Eq. (5) and
integrating by parts once, Eq. (6) reads as

oE
7=—/ dv—f JFP—/ dwv - Jrp
ot Qe

_ P 1 9 [8%G(f)
_F{ QdeV-E-T[H,H]—kE/QdeV-—-{ f” @)

av ovov

The boundary integrals, which are zero at infinity (provided thas, H are regular at
infinity), are omitted here. The second integral in Eq. (7) is integrated again by parts to fir
according to the definitions dfl andG,

9 [02G(f) 1
2. fl =— fV2G(f) = — HV2H.
/devv v { PVEN } o dvfviG(f) B /dev : (8)

Then, the energy moment yields [4]

JoE v? 3f 0 =
— = —— =-T .~ . T[H,H H, H]| =
o /devzat /dev[v - TIH. H] + QIH, ]} 0o ©

where the bilinear operat@[H, H] is defined as

HV2H

QIH. H] =

(10)

The result in Eq. (9) has been obtained for an infinite velocity domain, but also applies
finite domains provided that the distribution function is absolutely confined in them [4].
Two distinct steps are identified in the numerical description of the problem, namel
the discretization in time and the discretization in velocity space. Both steps are crucial
the adequate preservation of particles and energy. An energy-conservative discretiza
of the Fokker—Planck collision operator in velocity space has been developed for a :
cylindrical velocity spaceu, vp) (Fig. 1) by the authors in Ref. [4], which ensures that
Eq. (9) (necessary condition to develop an energy-conservative Fokker—Planck solver;
satisfied numericallyvithin the domain. In this scheme, the Rosenbluth potentiaknd
G have to be obtained from a second-order discretization of the differential problems

Q[H,H] = ——~ (11)

V3G = H. (12)
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FIG. 1. Diagram of the local cylindrical velocity coordinate system considered in this work. Cylindrical
symmetry is assumed. The spherical radius vector is included for reference.

=
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Notice that the linear Poisson problemtih (Eq. (2)) has been replaced by a non-linear
differential problem in terms 0Q[H, H] (Eq. (10)). The algebraic formulation and the
solution algorithm for these two problems is discussed in detail in Subsection 4.4.

However, the numerical cancellation of Eq. (9) fails at the boundaries. The cancellati
error has been predicted [4] to scale~-ad/Nuv,,,), whereN is the total number of mesh
points andvimit is the velocity domain limit. The issue of the numerical propagation of thes
errors in time is crucial and will be addressed in Subsection 5.3.

3. IMPLICIT ENERGY-CONSERVATIVE TIME INTEGRATION
OF THE FOKKER-PLANCK EQUATION

An efficient numerical time integration of Eq. (5) requires an implicit discretization in
time, namely

fn+l_ fn

= L(f") + O(At), (13)

At
wheren indicates the time level in the integration procedure,laafl) is the Fokker—Planck
collision operator, which can be regarded as a diffusion operator in velocity space. Tl
formulation is absolutely stable numerically, and time steps are only limited by accura
considerations. However, a pure implicit formulation of the Fokker—Planck collision oper:
tor is not practical due to the non-linear coefficients, which are a function of the Rosenbit
potentials. The simplest integration approach is to implement an iterative procedure on
coefficients until convergence is achieved,

fkr1+1_ fn

=L [ G, H ()], (14)
wherek =1, 2, .. .istheiteration level. The initial guessinthis iteratid jol, is obtained by
solving Eq. (14) with the Rosenbluth potentials determined with the solution at the previo
time level, f". The discretization of Eq. (14) in velocity space results in a sparse matri
which does not pose storage problems and can be inverted either with standard sol
or preconditioned Krylov methods. Although exact particle conservation is possible, lar
energy errors may result from the formulation in Eq. (14) with large time steps [3]. Thu:
an alternative, energy-conservative, non-linear implicit time iteration is needed.
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3.1. Energy-Conservative Time Integration Algorithm

The distribution function at the present time level!, can be regarded as the solution
of the non-linear problem
f—fn
At

E(f) = —L(f)=0. (15)

The root can be obtained using the Newton—Raphson iterative technique,

(gf) (figr — f) = —&(fp). (16)
K

Here k represents the non-linear iteration level. Introducéng), and noting that.(f) is
bilinear on f (the friction and diffusion coefficients are linear operatorsfdrand hence
(55 )k fi="2L(fi) [3], the following formulation results:

fipr — 7 (3L(f)

- o )ka—Lao. 17)

Upon convergence, the solution at timei{ 1) time level is obtained by identifying"+! =
fke1. Equation (17) conserves energy in every step of the iteration (i.e., fok)amg is
proven next. The energy moment of Eq. (17) is given by

AEKH! V2 fiypq — N v2 (AL(f) v2
At - /dVET —/dVE (a—f)kkarl—/dVEL(fk). (18)
N————

=0

The last term in this expression represents the energy moment of the Fokker—Planck
lision operator; although it cancels theoretically, it does not numericallyssan energy-
conservative discretization is used [4]. This is assumed in what follows.

By definition of the Jacobian, we can write, for an arbitrary functipn

<3L(f)> g = lim L(fo+€9) — L(fo)
f

of e—0 €

_ 2 2
_rd. 8 [ZT[H(fO)’gH(g)H 19°G(fo)  19°[3G(Q)]

()

ov oV 2 ovov 2 ovov
(19)
whered H (g) andsG(g) are defined as
oH
SH =(— 2
0=(%) .o (20)
G
se@ = (5 ) o @y
fo

The subscriptfy means that the Jacobian is calculated at fo. In obtaining (19), the
bilinear, symmetric nature of [H, H] has been taken into account. With these results,
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Eqg. (18) simplifies to

AEKt1 v2 9 9
=F/d vood
At 2 9v 9V

[zT[Huk) SH (fer)] +

19°G(fu) 19[8G(firn)]

g2 fl. (22
2 avav T vy k| 22

This equation remains completely general as to hbi# ) andG( f) are defined. In order to
find the specific constitutive relations&fl andsG from Egs. (20) and (21), the definitions
of H and G given in Eq. (11) and Eq. (12), respectively, must be utilized. Finding the
constitutive relation 08 G(g) is straightforward from Eq. (12) and yields

VZ[8G(g)] = §H(Q). (23)

However, finding the constitutive relation 8H (g) is more involved, sincéd is the root
of the following non-linear functional (Eq. (11)),

k[H(f), f] = Q[H, H]+f7H 0. (24)

Differentiating«[H (), f] with respect tof and operating the result @ yields

de[H(f), f] ok oH oK

0K
T = 039t 579= o H(g)+ﬁg=o, (25)

where Eg. (20) has been used. The partial derivatives yield

fé6H
m‘”‘ = Q[H.8H] + QISH. H] + —— (26)
oK gH
579= (27)
and, hence, the constitutive relation fat (g) is found,
H(f SH(g) f
QUH(T). SH@] + QIsH(@), H(D] =~ EEIET ()

For consistency, Eq. (28) has to revert back to Eq. (11) wdhenf. This is indeed the
case sincéd (f) is a homogeneous function of the first degree [kHaf) =aH(f)], and
hence

SH(g= f)— (%)J :!@OH[(He):]— H() _ HP).

Equation (11) is regained upon substitution of this result in Eq. (28).
At this point, the same integrations described in Egs. (7)—(8) are performed on Eq. (2
to obtain

k+1
AE /dw 3 FH(. (SH(fk+1)]_/dVH(fk)fk+l‘:5H(fk+l)fk
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which, by Eqg. (28), can be written as

A Ek+l
At

9 -
a/dv[waV~T[H(fk),5H(fk+1)]

n Q[H (fi), §H (fir)] + QIS H (fis), H(fk)]:| —0
> =0.

(29)

This result cancels by virtue of Eq. (9), true foryfunctionH regular at infinity, and hence
true forH + 8H,

/dv[v.%.ﬂH +8H, H 4+ 8H] + Q[H +8H,H+8H]}=O (30)
and by virtue of the bilinear nature of boT_?{H, H] (which is symmetric) and)[H, H],

T[H +8H, H + 8H] = T[H, H] + 2T[H, §H] + T[sH, §H]
Q[H +8H, H +8H] = Q[H, H] + Q[H, 8H] + Q[§H, H] + Q[§H, sH].

Introducing these expressions back in Eq. (30), the termbljrH] and [§H, §H] cancel

by Eg. (9), leading to the result in Eq. (29). This result implies that energy is conserved
any step of Newton'’s iteration (i.e., for any k), provided that Eq. (30) is ensured by usir
an energy-conservative discretization of the Fokker—Planck collision operator [4]. Hen
upon convergenceyE"1/At =0.

Thus, the implicit time discretization is only conservative if coupled with Newton’s
iterative technique. Epperlein [3] was the first to realize the properties of such a combir
tion when he considered a linearized form of the Fokker—Planck collision operator (i.e.
single Newton iteration) and arrived at a similar result for a spherically symmetric, on
dimensional velocity space. Equation (29) proves this in a more general fashion, for ev
step in Newton’s method, and for any geometry and dimensionality in velocity space.

Convergence in Newton’s technique is fast, provided the initial guess is within the radi
of convergence. In transient problems, the radius of convergence depends strongly on
time step used in the integration. To ensure convergence irrespectively of the magnitud
the time step, an adaptive time step scheme has been implemented.

3.2. Adaptive Time Step Scheme

The convergence of Newton'’s iterative technique for a given problem is extremely d
pendent on the initial condition. In particular, Newton’s method will have a quadrati
convergence rate if the initial guess for the solution falls into the radius of convergenc
However, it will take far longer—and even diverge—if the initial guess falls outside of thi
radius. In the non-linear problem in Eq. (15) (for which the initial guess is the solution at tt
previous time level), the radius of convergence is typically a strong function of the time ste
At. Intuitively, in situations far from equilibrium, the larger the implicit time stepis, the
more different the solutions at successive time levels are. In some cases, there is a thres
in At above which the updated solution of the distribution function becomes negative.

In order to prevent negative solutions, a time correction scheme has been devised to d
the Newton update, so that Newton’s method converges to a physical solution in almost
situation, regardless of the size &t. The essence of the technique is to introduce a time
gaugey that determines ifAt is too large, and, if so, provides an adequate valuaf
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to proceed with the first Newton iterations. Then, as the iteration procedure advances,
time step is slowly corrected towards the original valué\of In this way, each step in the
iteration procedure starts with an initial guess that falls within the radius of convergence
Newton’s algorithm.
The artificial time gauge is introduced in the problem by subtractiégrom the right
and left hand sides of the original problem, as
of  f f

— — — =L(f) - —.
at y y

The left hand side can be grouped using the integrating factor technique to give

d _t _t f
a[e rfl=e v[L(f)—y].

Integrating this expression frotA to t"*1 =t" 4 At yields

n+1 n
e_tTfn'H'—e_tan:/

tn

tn+1

e [L(f)— f}. (31)
y

The integral can be approximated by

L . f fn+l n+1 n
/ e v |:L(f)—:| %_{L(fn-kl)_:|y(e_7—e_7>+O(At)
t 4 v

n

which leads, upon substitution in Eqg. (31), to the following modified first order implicit
discretization:
fn+1 — fn

= L(f"Y, (32)
n

Here,n is the modified time step, =y (1 — e 2!/7), and has the limits

AtLy =n— At
At>y =n— y.

Hence is limited byy whenAt is too large and falls back to the originat if it is small
compared tgy .

Obviously, the effectiveness of Eq. (32) in avoiding unphysical results during Newton
iteration will very much depend on the wisdom in choosing the time gaugda,this work,
y is chosen as half the time step that would render a negative distribution function in |
explicit scheme,

— EE rT]Ei)(,j ( fi?j)
2max,; [—@f/o0]; = —Li j(fM)]’

14

Note that the expression above selects the time scales corresponding™o< 0. Also,
although the two maxima may not occur exactly for the sampg) fiode, they will be very
close since, in a diffusion problem, the largest negative rate of change usually correspo
to the peak of the distribution. This selection has proven effective in actual simulatio
(Subsection 5.2).
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The practical implementation of the adaptive time step scheme is as follows:

o First, the modified time step= 1 is determined as indicated abovey¢f> 0.8At,
thenAt is used directly, without any time correction, until convergence is achieved.

o If 5o < 0.8At, thenng is used as the time step for the first Newton iteration.

o In every subsequent Newton iterationin Eq. (32) is set tg = kg, wherek is the
iteration number, untih > 0.8At.

e At this point, 5 is set toAt, and the Newton—Raphson algorithm proceeds until
convergence is achieved.

4. THE SOLVER ENGINE

Figure 2 presents a flow chart of the Fokker—Planck solver algorithm discussed in 1
previous sections, with the crucial differential equations to be solved numerically. Accordir
to this diagram, it is clear that the energy-conservative Fokker—Planck solver has to d
efficiently with three different classes of algebraic problems, namely:

1. Non-symmetric dense systems, stemming from the discretization in velocity spa
of Eq. (17). The Jacobian matrfaL /o f )k is non-symmetric and dense because the friction
and diffusion coefficients are integral expressiong o he solution of this system yields
the updated solution of the distribution functidéfit?.

2. Non-symmetric sparse systems, stemming from the Newton iterative treatment
the non-linear constitutive relation éf andsH (Eqgs. (11) and (28)).

3. SPD sparse systems, stemming from the constitutive relati@hands G (Egs. (12)
and (23)).

If standard solvers (such as direct solvers or stationary iterative techniques) were to
used in this context, the problem simply could not be handled due to prohibitive stc
age requirements and due to the inefficiency of these solvers for large, non-symme
matrices.

Krylov iterative methods, however, are very well suited for this task because of their ir
proved efficiency over standard solvers and because they can be implemented Jacobiar
[6, 7], i.e., without ever forming (and storing) the Jacobian matrix. The better efficienc
of these methods in multidimensional problems can be appreciated in Table I, where

TABLE |
Computational Complexities of Various Solvers for the Poisson
Equation in Cartesian Coordinates

Inversion method 1D 2D 3D
Direct solver O(N) O(N?) O(N'73)
Jacobi/Gauss-Seidel O(N?) O(N?) O(N®?3)
SOR with optimako O(N?) O(N?¥/7?) O(N#3)
Conjugate Gradient (CG) O(N?) O(N?¥/?) O(N#3)
Preconditioned CG (W/SOR) O(N?/?) O(N%% O(N7/8)
Multigrid O(N) O(N) O(N)

Note.Orderings are valid as the number of unknovishs> co and have been
obtained based on results from Ref. [19] (for direct solvers, J/GS/SOR, and CG/
PCG) and Ref. [18] (for MG).
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START

t=At ; n=1

A

k=k+1

Z_Ei m=ﬁ_(k)
o et

Per GMRES iteration (Krylov vector %), solve for §H, 6G from:

oluiss H]+Q[5H,H(f’)]+i—‘;-ﬁ=-ﬂ2& ; VsG=6H

onvergence NO
in f*and
n=At?

n=n+1

t=t+ At YES

FIG. 2. Flow-chart of the energy conservative algorithm, with the details of all the algebraic problems th:
need to be solved, as well as the integration of the time adaptive scheme.

computational complexity (number of operations) of the Krylov CG technique (with an
without preconditioning) is compared against that of standard iterative techniques and mt
grid (MG) methods for the reference case of the laplacian operator in Cartesian coording
in one, two, and three dimensions. The comparison indicates that the least efficient forr
CG (i.e., without preconditioning and without any external parameter) is already as efficie
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as the successive over-relaxation (SOR) technique with optimal overrelaxation params
w. Furthermore, the CG’s efficiency is significantly boostegt®conditioninghe problem
(in this case, using approximate factorization), almost matching that of MG methods.
Although, according to Table I, MG is the most efficient alternative for the Laplacial
reference case, Krylov techniques are preferred for the non-linear application of inter
here because MG cannot be implemented Jacobian-free. Thus, a MG implementation wc
require forming and storing the Jacobian matrix for each Newton iteration, eliminatir
the advantage. Nevertheless, the MG superior convergence properties are incorporate
the Jacobian-free Krylov solver via the preconditioning step. The next sections explain th
concepts further. The implementation of these techniques in each of the different algeb
problems enumerated above will also be discussed in detail.

4.1. Introduction to Krylov Methods

Krylov iterative algorithms [5] belong to the family of semi-iterative conjugate methods
The term “semi-iterative” indicates that, while these techniques are theoretically exact in
many iterations as the range of the matrix, they provide very good estimates much soo
This convergence property relates to the fact that these methods minimize the resic
between the exact and the approximate solutions at every iteration.

Krylov algorithms are conjugate in that they use conjugate vectors to solve the syste
Two vectorsd;, d; are said to be conjugate with respect to a non-singular matrik
di-A-dj=0,i#j. If a completebasis of conjugate vectors; }[\; is known for the
matrix A, the solution to the linear systeAx =b can be trivially found in the following
way,

dj-b
X=Zi:yidi:>dj~A-x=Zi:yidj~A~di=d,--b:>y,-=m. (33)

The task of the Krylov algorithms is to build this basis as the iteration proceeds. This
done by orthogonalizing the Krylov subspaee, Arg, A%rg, ..., A< rg}, wherek is the
iteration numberl <k < N), andrg=b — Axg is the first residualXp is the initial guess).
Once the orthogonal subspace is formed, the coefficigntse obtained from Eq. (33),
and the approximateis tested for convergence. This is done iteratively, until the specifie
convergence criterion on the residual is met. This process can be done very efficiently
SPD matrices (CG [12]), because the orthogonalization of the Krylov subspace can be d
from a recurrence relation involving only the last two Krylov vectors found. Furthermore
because CG minimizes the functiorialy) = %(y, Ay) — (y, b) (which for SPD matrices
has a uniqgue minimum at=x), it guarantees convergence in as many iterations as th
range of the system.

However, for non-symmetric non-definite matrices the situation is more complex, becat
the orthogonalization process involves multiple Krylov vectors, &gy is not necessarily
minimal fory = x. Among the available Krylov techniques for non-symmetric systems [16]
GMRES [13] is chosen. In GMRES, the minimization is done directly over the residu:
by obtaining the{y;} coefficients from the corresponding least squares problem; henc
convergence is guaranteed. In addition, GMRES is very robust in numerical Jacobian-f
applications [7]. The downside of GMRES is that the iteration procedure requires stthring
the previous Krylov vectors found, which may result in large storage requirements unle
the iterative procedure converges rapidly. Thus, to avoid large storage requirements,
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number of GMRES iterations required for convergence must be minimal, and an effecti
preconditioning scheme is required.

4.2. Jacobian-Free Implementation of Krylov Methods: The Newton—Krylov Technique

As opposed to stationary iterative techniques, no matrix splitting is needed in Krylc
iterative algorithms to proceed with the iteration, and all that is required is the product
the matrix of coefficients times a vectardictated by the iterative algorithm. This property
is of particular relevance when the linear system stems from Newton’'s method, as
matrix-vector product involves a Jacobian matrix, and it can be expressed as

(34)

e—0 €

(%) x — lim A(Yo + €X) —A(YO)'
8y Yo

This equation indicates that it is possible to calculate the matrix-vector product witho
ever forming the Jacobian matrix (hence, the name Jacobian-free). This method is usu
referred to as the Newton—Krylov Jacobian-free technique.

In this particular implementation, the limit in Eq. (34) can be calculated theoreticall
(Eg. (39) in Subsection 4.4). It is important to bear in mind, however, that in cases whe
this limit can only be calculated numerically (using a small—but non-zefpthe accuracy
ofthe algorithm is limited by the error introduced in the numerical evaluation, whose leadir
term is proportional tde |x|?). Hence, a Krylov algorithm that renders orthonormal (not just
orthogonal) Krylov vectors (such as GMRES) is essential to preserve accuracy and ens
convergence.

4.3. The Preconditioning Step

The preconditioning step can be conceptually viewed as acting on the matrix of coef
cients A with an operatoP—* (the preconditioner) such that eithé? {1 A] (left precon-
ditioning) or [AP~1] (right preconditioning) is sufficiently close to the identity matrix. In
Jacobian-free applications, right preconditioning is preferred because it can be natur:
incorporated into the Jacobian-free product as

z

-1
Y /y, HZ/—’ e—0 €

(35)

As Krylov techniques only require the product of the system matrix times a vector to procee
the preconditioning step can be implemented in the algorithm very straightforwardly al
usually boils down to solvind® - z=x [17], wherez is the unknown, and is the Krylov
vector dictated by the algorithm. Preconditioned GMRES is also able to return orthonorn
Krylov vectors, because the Krylov vectors in this case are obtained form the Krylc
subspacéro, Ap o, Af)ro, e A‘;—lro}, whereA, = AP~ for right preconditioning, and
A, = P~! Afor left preconditioning.

The preconditioning matri® has to contain significant information about the eigenvalue
spectra of the original system matrix for the preconditioning step to be effective. This mea
that P may carry some of the ill-conditioned features of the original matrix—if any—anc
that the difficulty in inverting the original matrix will be present in the inversionPof
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as well, thus defeating the original purpose of preconditioning, namely, accelerating 1
convergence in an inexpensive way. Fortunately, in practice, a reasonable approxima
to z will suffice for this purpose. Thus, preconditioning schemes [8] are based on “simpl
ways of obtaining this approximation, such as stationary iterative techniques (Jacobi, Gau
Seidel, SOR), incomplete Cholesky decompositions, or approximate multigrid methods,
name some. The disadvantage of using such simple techniques is that their potentis
acceleration is limited by the same boundaries that limit their use as stand-alone solv
This is particularly important in the case of preconditioners based on stationary iterati
techniques, in which the number of iterations presents a power scaling with the numi
of mesh points that renders them very inefficient when high resolution is required. For t
2D Laplacian operator, this scaling@(N) for Jacobi or Gauss—Seidel, afiN¥/?) for

the optimized SOR method. This power scaling is a direct consequence of the fact t
stationary iterative techniques are successful in damping oscillatory harmonics of the inif
residualee =x — P - zy, but are very inefficient in removing the smooth modes, a task t
which the iterative method devotes most of its effort. For this reason, stationary iterati
techniques are also called “smoothers.”

Multigrid preconditioners [10, 11] use the principles of MG techniques to deal witl
this limitation. These techniques combine the smoothing property of stationary iterati
techniques with a suitable grid coarsening (“restriction”) algorithm, on the grounds th
smooth modes look oscillatory in a coarsened mesh. Thus, successive restriction st
followed by smoothing steps (to remove the oscillatory modes in the coarsened mesh), \
be very effective in removing the smooth modes from the initial resigudlhis procedure
is performed recursively to a point where a direct solution is efficient, and then this exe
solution is extrapolated back (“prolongation”) through the mesh ladder, with a smooth
step between successive extrapolations, up to the original mesh. This is the simplest ¢
(so-called “V-cycle™), and it is not difficult to envision more complex cycles stemming fron
the combination of partial or complete V-cycles, intermixing restriction and prolongatio
steps as desired (thus resulting in W-cycles, and so on [18]).

In stand-alone MG solvers, the adequate engineering of the restriction and prolongat
algorithms is essential to preserve the accuracy and efficiency of the solution. However
preconditioners (i.e., accelerators of convergence of an already accurate solver), a de
approximation to the actual solution is often enough to speed convergence. Thus, restric
and prolongation operators constructed from simple interpolation algorithms will suffice
greatly improve the Krylov rate of convergence. Moreover, since MG solvers damp all ti
modes at similar rates, as preconditioners they will render an almost constant numbe
iterations of the solver (here, CG and GMRES) with the mesh refinement.

As mentioned earlier, it is impractical to use MG methods as stand-alone solversto d
with the full algebraic system, because they cannot be implemented Jacobian-free. Howe
as preconditioners, they only have to deal with a sparse approximation of the exact sys
matrix, which can be formed and stored easily. In this paper, the preconditioning matrix
obtained from the sparse representation of the Fokker—Planck equation outlined in Eq. (.
Results on the performance of this preconditioner are presented in Subsection 5.1.

4.4. Implementation Details of the Energy-Conservative Solver

As stated earlier, the development of an energy-conservative solver involves deal
with three different problems, namely, symmetric sparse, non-symmetric sparse, ¢
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non-symmetric dense. In the following sections, the implementation of Krylov methoc
for each of these problems is discussed in detail.

To focus the discussion that follows, a 2D cylindrical velocity space with angular symm
try is adopted. This space is spannedty vp), wherev; is the cylindricalz-axis, andv
is the cylindricalr -axis (Fig. 1), andy; € [0, vimit]; vp € [0, vimit]. Here, vimit is typically
set to several times the characteristic velocity of the probignT,he domain is discretized
with an integer mesh and a half mesh [4].

4.4.1. Fokker—Planck non-linear systenOnce the Fokker—Planck collision operator is
discretized in a two-dimensional velocity space (iL&.f) is transformed inta\; j ( fi m),
according to techniques presented in Ref. [4]), the energy-conservative time discretizat
scheme in Eq. (17) becomes the following algebraic equation,

ijim <3Ai.i) } et T k
ety DELLUSEEN, B 2 f == —A;i(f*), 36
[ " hm ) . i (fim) (36)

wheren is the (corrected) time step, is the time level index, an#t in the non-linear
Newton iteration level. Herej; j | m represents the unitary tensor @iecker delta). De-
fineg=i+N;(j —1),s=1+ N, (m—1) (thus allocating all the mesh points of a two-
dimensional mesh in a single vector) to cast Eq. (36) in the standard form of a linear syst
of equations, as

SQ»S 8Aq k+1 fqn k
- [ — frrt= 2 A (fN). 37
{n (afs)k] . . a(fs) 37)

In this equation, the matrix-vector product required to solve the system is

(e[ (s ()
n ofs n of n of

wherel is the identity dyadic, andlA /of is a Jacobian matrix, which is non-symmetric and
dense (because both the friction and diffusion coefficients are integral expressibps of
Then, itis possible to calculate the matrix-vector product in Eg. (38) using the Jacobian-fr
techniques introduced in Subsection 4.2. This is in fact the crucial element that allows 1
development of a competitive energy-conservative Fokker—Planck solver, since formi
and storing the Jacobian matrix would be prohibitive.

As the Fokker—Planck collision operator is bilinear bnthe derivative in Eq. (34) can
be calculated theoretically (Eqg. (19)), as

dAq a 9 = K 102G( f¥)
=12 2T [H(fX), sH S22 s)
dfs sz {av v { [H (), (XS)]+2 vav
2
MELA LSO fsk” . (39)
2 dvov a=i+Ne(j—D)

The operator within curly brackets is to be discretized atithg) (hode in exactly the same

way as the Fokker—Planck operator itself, using an energy-conservative difference sche
[4]. A disadvantage of the Jacobian-free product in Eq. (39) is that it requires solving fi
8H (xs) and8éG(xs) (i.e., two more algebraic problems) in every GMRES iteration. (Alter-
natively, one could use the outer Newton—GMRES iteration to solve the couled proble
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{f, G, H}; this would simplify each GMRES iteration at the cost of increasing the dimen
sion of each GMRES vector by a factor of 3.) Therefore, limiting the number of iteration
is crucial, not only to alleviate the storage requirements of GMRES, but also to presel
the efficiency of the algorithm.

The preconditioning matri® used for this problem is the 9-banded sparse matrix stem
ming from a second-order discretization in velocity space of the Fokker—Planck collisic
operator in the iterative formulation presented in Eq. (14), with the Rosenbluth potenti
lagged to the previous time level. This matrix is stored in diagonal sparse format. The tr
Jacobian matrix is never formed.

4.4.2. Linear Poisson systemsThe energy-conservative solver requires that botl@the
Rosenbluth potential artds be determined from the following partial differential equation
(Egs. (12) and (23), respectively),

1
V3 = —(@pYp)p+Yir =S, (40)
p

whereY = {G, §G} andS={H, §H}, respectively. Here, the subscriptndicatesd/d v,
and the subscript indicatesd/adv,. This PDE is discretized using second order (centered
finite differences in a 5-point stencil, as

1 Vpj+1 ((Yi,j+1 - Yi,j)/Avp,H%) —Vpj-1 ((Yi,j - Yi,j*l)/AUp,jfz—zl)
—(pYp)p =
Vp Up,jAvp,

(Viewj = Yi)/Avipa) = ((Yij = Yicnj)/ Ay 1)

= AUr,i
Velocity increments are defined in Ref. [4]. As — 0, the term(1/v;,) (vpYp)p — 2Ypp by
L'hospital’s rule, and is discretized with symmetric boundary conditions ¥.g;.1 = Yi j—1
atj=1)as

N Yij+1— Yijj
ppi.j=1 = - .
Avp jAvp it lij=1

Such discretization transforms the differential operator in Eq. (40NnaN non-symme-
tric 5-banded diagonal sparse matrix (WNh= N, x Nj, whereN, andN, are the number

of mesh points in the, andv, directions, respectively).

However, Krylov methods are faster and more efficient for symmetric matrices (CG c:
be used instead of GMRES). The non-symmetry in the previous matrix is due tgutpe 1
coefficient, which can be removed by multiplying both sides of the discretized form c
Eqg. (40) by the volume element in velocity space (giverNsy = 27 v, jAv, jAvy; fora
general mesh point; specialized expressions are needed for the boundaries and corner g
[4]). The result of this operation reads

Yij+1— Yij Yij—Yij-1
Avyj vp’H%—A _Up'j’%iA
Up.j+3 Up.j-3
Y- Y Y-V
+0p,j Avp, | o = | = wp jAvp AW S|
’ ’ Av, 1 Av, 1 ’
ri+3 ri—2
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Clearly, the Jv, coefficient has disappeared, and the resulting 5-banded sparse matrix
rendered symmetric positive definite (SPD). Hence, CG is used as the solver driver. T
matrix is stored in diagonal sparse format. The preconditioning matrix is the same as
system matrix.

4.4.3. Non-linear Poisson systenilhe problem for théd Rosenbluth potential is more
involved, since the following non-linear PDE [4] has to be solved numerically:

1 1 fH
QH, H] = 7| (HiH) — H? +2 (vp p)p+H2—v—(upHpH)p =-—
P
This equation has to be solved iteratively by Newton’s method, applied to the followin
non-linear functional (recall Eq. (24)):

fH
k[H(f)] = Q[H, H] + -

The root of this function solves the non-linear Poisson problem above. Haeethe only
unknown (f is known). Then, the Newton iterative method reads

oK

— 1| AH = —k(H® 41
il k(H), (41)

whereAH = H**1— Hk andk represents the non-linear iteration level. Hence, the solutior
of the H problem requires a Krylov solve (to invert the linear algebraic system that sten
from the discretization of Eq. (41)) within each Newton iteration.

Since the linear algebraic system stems from Newton’s method, the matrix-vector prod
in the Krylov iteration of Eq. (41) can be performed using Jacobian-free techniques, a
yields, for a generic functiog,

oK _ K K E
oH Hk@J—Q[H , 9] + Q[g, H] + >
1 ‘ HX " 1 .
1 g 1 fg
+ 16r {(ngk)r — Hfg +27p(”pH )pt+ Hygp — ( vpgpH¥) ] +t5

(42)

This equation is to be discretized with second order (centered) finite differences. As oppo
to the linear problem, this non-linear problem cannot be symmetrized. Hence, GMRES |
to be used as the Krylov driver. The exact Jacobian matrix (which is a 5-banded diagol
matrix) is used to precondition the system.

Minimizing the number of iterations in this non-linear problem is crucial for the efficiency
of the solver, in terms of both memory and CPU. Since inverting a linear, symmetric proble
is preferable (because CG is used), the lindaroblemis solved first (in the same way as the
G problem) to provide an accurate initial guess for the Newton iteration (the solutions of tl
non-linearH problem and the linead problem differ only by truncation errors [4]). With
this initial guess, Newton'’s algorithm typically converges in less than five iterations despi
stringent convergence toleranagis:(H¥) |, < 10~°, wherex is the vector of residuals in
thekth Newton iteration, Eq. (41)).
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4.4.4. Constitutive equationféH. The constitutive relation faYH is givenin Eq. (28),
reproduced as

H(f)g+sH(g)f
> )

Q[H(F), sH(®] + Q[sH(g), H(F)] = —
weresH (g) = (%)fg. Using Eq. (26), this equation can be rearranged as

i _ H(fHg
B—Hf(SH(g)_— o (43)

This equation is formally identical to the Newton iteration step in Eq. (41). Hence, the sar
techniques are used for its inversion.

5. RESULTS

The motivation of this work is the development of an efficient, robust, energy-conservati
Fokker—Planck solver. The previous discussion shows that this is theoretically possi
and implies that it is numerically tractable if MG-preconditioned Krylov techniques ar
employed. This section discusses the actual performance and limitations of the solver.

In order to test this formulation under extreme conditions, two distinct initial distributiot
functions will be considered for the numerical experiments:

1. Aradial beam characterized by a distribution functidi(v, , v,) with strong an-
gular dependence. The beam is centered,on 0.5 andv, =0, with beam temperature
Tb =8.89- 103 and average energf) = 0.138.

2. A symmetric beapwith no angular dependence [i.é.(v;, vp) = f (v)]. The beam
is centered om = , /v? + v,% = 0.5, with temperaturd, = 8.98- 103 and average energy
(E)=0.147.

Velocities are in units of an arbitrary reference veloaity,energies are in units @f. Both
beams are localized in the uniformly discretized velocity subdomain and are depicted
Fig. 3.

5.1. Effectiveness of the MG Preconditioner

The efficiency of the solver largely depends on the efficiency of the iterative inversic
technique. Table | shows that unpreconditioned Krylov techniques are already as effici
as the most efficient of alternative methods for multidimensional problems. Preconditioni
improves performance further, but the degree of improvement very much depends on
particular choice of the preconditioning technique.

MG preconditioning is chosen for this application and, with the exception of the smoothe
we employ the simple MG method developed in [11]. Piecewise constant interpolation
used for the restriction and prolongation steps. The mesh coarsening factor is 2. E
preconditioning call performs two consecutive V-cyclesrof(2) levels. Not more than
(r — 2) levels in a 2 x 2" mesh may be considered for the restriction step, to ensure th
a nine-point stencil (X 3) required to discretize the Fokker—Planck collision operator is
contained in the coarsest mesh. Instead of solving the problem exactly at the coarsest ¢
an approximate solution is found with the smoother. The smoother consists of five pas
of the symmetric Gauss—Seidel (SGS) iterative scheme, which achieves a symmetric
eration matrix by performing a forward and a backward pass per iteration step. This
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Symmetric beam

0.13

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Radial beam

30.7

FIG. 3. Initial distribution functions employed in the assessment of the properties of the solver. Velocity uni
are arbitrary. Some reference values of the distribution function at selected contours are indicated; contours
equally spaced.

beneficial for non-symmetric systems (since it tends to symmetrize the Gauss—Seidel ite
tion, hence improving convergence [17]) and is crucial to grant a SPD preconditionerin C
The SGS technique will also be implemented as a stand-alone preconditioner (consis
of ten SGS iterations), to gauge the effectiveness of the MG preconditioner.

The numerical experiments are performed in a velocity domain limited; by, €
[0, /2], uniformly discretized with a"2x 2" mesh. Two different time stepat = 0.01r
and At =, are considered to address the impact of large time steps in the effectiv
ness of the preconditioner. Here,is the collisional time scale of the problem, given
by © = 4 (Z€)*ni/m?vg, whereZeis the charge of the species under consideratiois,
the massn is the density of the plasma,is the Coulomb logarithm, and} is the char-
acteristic speed in the system. The Fokker—Planck collision operator is linearized [3]
prevent Newton’s method and the time-adaptive scheme from obscuring the effectiven
of the preconditioner for the large time step case. The initial distribution function for th
numerical experiments is chosen so that no unphysical results are obtained with the
earized Fokker—Planck solver for the large time step (Subsection 5.2). The symmetric be
in Fig. 3 satisfies this requirement.
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Three different quantities are monitored as the mesh rsigevaried: the number of
Fokker—Planck iterations per time step, the total number of Poisson iterations per Fokk
Planck iteration (including the linear and non-linear systems), and the cumulative CPU tir
in an HP9000/735 workstation over the first three time steps, in seconds. The latter is
most important figure of merit to measure the effectiveness of MG. Results are depictec
Fig. 4 and suggest the following observations:

e The number of iterations in the Fokker—Planck system is strongly dependent on
magnitude of the time step. Thus, although MG and SGS perform similarly for small tirr

a 9 d =
45-1
40
* SGS 2} SGS
= g = 35
7]
é) E 30+
= (ED 25+
(0]
o MG a MG
w4 Loy
= #*
107
.
T 1 T 1
5 6 7 5 6 7
Mesh size, r Mesh size, r
b 25 e 160
2001 140
175+ SGS 120 SGS
2 1504 P}
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8 1254 %
@ o ™
° 100+ 5]
o 75+ o s
+*® *
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—— T '__’/_,__—,‘_'
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5 [ 7 5 6 7
Mesh size, r Mesh size, r
C 3000 f 200007
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FIG. 4. Comparison of the performance of the SGS preconditioner vs the MG preconditioner in terms of t|
mesh refinement (given loy=5, 6, 7ina 2 x 2" mesh) and magnitude of the time steyt = 0.01z (left column)
and At =t (right column)]. The comparison is done for the number of Fokker—Planck iterations per time ste
(a),(d); the number of Poisson iterations per Fokker—Planck iteration (b),(e); and the cumulative CPU time in
HP9000/735 workstation in seconds (c),(f) in the first three time steps.
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steps (Fig. 4a), MG clearly outperforms SGS for large time steps (Fig. 4d). Note that M
renders the number of Fokker—Planck iterations almost constant with the mesh refinem
(as expected), and that its performance is only weakly dependent on the time step size

o As for the number of Poisson iterations per Fokker—Planck iteration, the superiori
of MG is evident for both the small and large time steps (Figs. 4b, 4e). Again, MG keej
the number of iterations almost constant with the mesh size and the time step.

e The results for the CPU time provide crucial insight about the effectiveness of M
preconditioning techniques. According to Figs. 4c and 4f, although MG is generally fast
than SGS, it only outperforms SGS significantly in fine meshes, and the improvement
greater for large time steps (almost an order of magnitude for'tke22 mesh andit = 7).
This occurs in spite of the significant improvement that MG introduces in the number
Fokker—Planck and Poisson iterations for all mesh refinements, particulafy fer.. The
reason is that SGS is much cheaper (CPU-wise) per preconditioning call than MG, and t
somewhat offsets the effect of the reduction of the number of iterations in the CPU time

These results indicate that, although the MG preconditioner is effective for any mesh
finement and any time step, itis particularly suited for fine meshes and large time steps.
results also confirm the ability of Krylov techniques to deal with the variety of algebrai
systems present (and particularly with the dense Fokker—Planck system), as indicatec
the relatively small number of iterations and short CPU times in all cases.

5.2. Effectiveness of the Time Adaptive Scheme

A robust solver gives meaningful answers for extreme choices of mesh refinements ¢
time step sizes. Although numerical instabilities are not an issue here due to the implicitn
of the time integration and the nature of the problem at hand, convergence problems n
arise in the Newton—Raphson non-linear algorithm for the time integration. Large time ste
are the most critical, since Newton’s radius of convergence varies inversely with the tir
step.

An adaptive time step scheme has been implemented (Subsection 3.2) to avoid diverge
of Newton’s method in these situations. Its effectiveness is analyzed here by monitoring
performance of the solver for the particular case of the radial beam in Fig. 3. The veloc|
domain is the same as in the previous section, uniformly discretized withxé322mesh.

It is of interest to find the solution of the fution-linearFokker—Planck collision operator
att = 1.5¢ with a single time step of sizat = 1.57, with and without the aid of the time
adaptive scheme.

The solution of the problenwith the time adaptive scheme is shown in Fig. 5a. The
different time steps that the time adaptive scheme has selected along the Newton iterat
together with the magnitude of the Newton residual, are shown in Table II. The time adapti
scheme succeeds in finding an initial time step that places the initial distribution functic
within the Newton radius of convergengat = 0.13r). Subsequent change of the time step
in each iteration does not preclude convergence, as indicated by the decreasing trend o
Newton residual. It does preclude, however, the quadratic convergence rate character
of Newton’s method, which only appears when the time step remains fixed (i.e., after t
target time step\t = 1.57 is reached).

In the case of solvingvithoutthe time adaptive scheme, the Newton iteration does no
converge, as shown in Table Ill. The reason for this divergence can be found by looki
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TABLE II
Evolution of the Newton Residual of the Fokker—Planck Non-
linear System for a Single Time StepAt= 157 (where 7 Is
the Collision Time Scale), Using the Time-Adaptive Scheme to
Avoid Unphysical Solutions

Newton it. Adaptive time step Magnitude of residijal ||,
1 0.1x 634.16
2 0.2& 119.2
3 0.3x 73.48
4 0.5 49.56
5 0.6x 36.34
6 0.7& 27.94
7 0.9 22.15
8 1.0x 18.1
9 1.1& 15.0

10 1.5 29.52
11 1.5 4.61
12 1.5 3.32.10°?
13 1.5 8.6-10°
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FIG.5. Results of the EC solver for the radial test case-afl.5t, obtained by (a) solving the full non-linear
Fokker—Planck equation with the adaptive time-step scheme\angdl.5z, (b) solving only for the first Newton
iteration with At =1.5t¢. Some reference values of the distribution function at selected contours are indicate
contours are equally spaced.
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TABLE 11l
Evolution of the Newton Residual of the Fokker—
Planck Non-linear System for a Single Time Step
At =157 (where T Is the Collision Time Scale), With-
out Using the Time-Adaptive Scheme

Newton it. Magnitude of residudlle ||»
1 634.2
2 501544.0
3 No convergence in GMRES

at the distribution function after the first Newton iteration, depicted in Fig. 5b. This plo
shows that the resulting distribution function is negative, which indicates that the origin
time stepAt = 1.5t places this initial distribution function out of the radius of convergence
of the Newton—Raphson algorithm. Note that, ultimately, the failure of the algorithm doe
not come from a divergent Newton algorithm, but from the negativity of the distributior
function, which results in an ill-conditioned linear system and GMRES fails to converge

These results indicate that the time adaptive technique is successful in ensuring ¢
vergence for exceptionally large time steps, thus improving the robustness of the sol\

5.3. Energy Conservation in the Solver

The issue of energy conservation is fundamental and has been the driver for the wh
development presented herein. As shown in Subsection 3.1, the non-linear time integra
is energy conservative provided that the discretization of the Fokker—Planck operator
velocity space assures the cancellation of the energy moment. Although it is possible

Vp

Geometric

Uniform

Vi

| | |
| . [ .
Uniform Geometric

FIG. 6. Sketch of a combined uniform-geometric discretization mesh, with additional accuracy provided
the outer boundaries.
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develop a difference scheme that dramatically improves this cancellation [4], exact num
ical cancellation of the energy moment is not possible due to errors at the boundaries
a finite velocity domain. Thus, it is crucial to ascertain how this error propagates alol
the time integration, whether the energy conservative solver provides better results ti
other implicit iterative solvers, and what is the cost—in terms of CPU time—of the ener
conservative approach vs. other implementations.

In order to gauge the performance of the energy-conservative (EC) scheme, a particle c
servative, non-energy-conservative (NEC) implicit iterative solver has been implement
The NEC solver employs the iterative approach outlined in Eq. (14), with the collisio
operator discretized in velocity space with a centered finite difference scheme [4]. To ¢
sure a fair comparison, MG-preconditioned Krylov techniques are also used in the NE
(MG-preconditioned GMRES applied to Eq. (14) is by itself a new and useful contribution
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FIG. 7. Global energy error of the energy-conservative (EC) solver and the non-conservative solver (NEC)
terms of the mesh refinement (giventby 5, 6, 7 ina 2 x 2" mesh) in a period of §, for both (a) the symmetric
and (b) the radial initial distribution functions.
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FIG.8. Global energy error of the energy-conservative (EC) solver and the non-conservative solver (NEC)
terms of the mesh refinement (givenroy 5, 6, 7ina 2 x 2 mesh) in a period of 1f) for both (a) the symmetric
and (6) the radial initial distribution functions.

For adequate energy conservation, the 2D cylindrical velocity domain is discretized |
with a combined uniform-geometric mesh (Fig. 6) with@ints per direction, split in a
%/% proportion between the uniform and geometric regions. The uniform mesh region
limited by vy, v, € [0, +/2]; the geometric mesh region is limited by, vp € [v/2, viimit]-

Simulations are performed for both the symmetric and the radial initial distribution func
tions (Fig. 3). Two magnitudes are monitored, namely, the cumulative energy error in tir
periods of 5 (the time required for the system to reach LTE) and,ldhd the CPU time
spentin the simulation. The EC approach solves the linearized Fokker—Planck operator (|
Newton iteration); the NEC approach performs ten iterations on the Rosenbluth potenti
per time step. The time step st =0.27 in the radial beam case (to prevent unphysical
results), andAt =7 in the symmetric beam case. The velocity domain limit is taken a:
vimit = 10 unless otherwise specified. Convergence tolerances in the iterative solvers
set to|le ||, < 1077, whereg is the vector of residuals. The MG preconditioner in these
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FIG.9. Time histories of the cumulative energy ermE (%) in the EC and NEC solvers, for the radial initial
distribution function withv;my = 10 in (a) a 32 32 mesh, and (b) a 128128 mesh.

particular simulations employs three consecutive V-cycles with two SGS passes per smog
call.

The results for the cumulative energy error (defined &%) = 100x |(Es — Eg)/Eo|,
whereEyg, E¢ are the initial and final energies, respectively) of the EC and NEC solvers wit
both the radial and the symmetric initial distribution functions are depicted in Fig. 7 (fc
t =57) and Fig. 8 (fot = 10r). Both figures present the same patterns, although magnituds
of relative errors are different. The scaling of the energy error is of particular interest. T
energy error in the NEC solver shows aNLscaling (whereN =2 x 2" is the number of
mesh points), consistent with a second order accurate difference scheme. On the cont
the energy error from the EC solver presents virtually no scaling with the mesh refineme
(in contradiction with the,% scaling found in Ref. [4] for the error in the cancellation of
the energy moment). The discrepancy originates in the fact that the boundary terms of
integral in Eq. (29) are different from the boundary terms of the energy moment integral
Eq. (9) and do not follow the same scaling laws. Consequently, energy conservation in
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FIG.10. The CPUtimes of the EC and NEC solvers corresponding te &0z run, for both (a) the symmetric
and (b) the radial initial distribution functions, and for different mesh refinemgnt2" x 2 (r =5, 6, 7).

EC solver is better than in the NEC solver in coarse meshes (by an order of magnitude
the 2 x 2° mesh), but the advantage is lost in fine meshes.

The energy error in the EC solver does show a;di; scaling (as indicated by the results
for vimit = 10, 30). Howeverpiinmi; is effectively bound by efficiency considerations (MG
preconditioning works best with uniform or nearly uniform meshes) as well as accura
considerations (the/Lymit scaling is lost fowjin;; sufficiently large [4]).

Time histories of the cumulative energy erdiE(%) of the radial initial distribution
function with both the EC and NEC solvers are presented in Fig. 9. The cumulative enet
error is monitored up to= 10r. Results are plotted for a 3232 mesh (Fig. 9a—where the
energy discrepancy between the EC and NEC solvers is large—and foralZBmesh
(Fig. 9b—where the energy discrepancy is small. In all caggg = 10. These figures show
that, while the energy change with the EC solver evolves linearly with time at all times, tt
energy change with the NEC solver behaves non-linearly during the first two collision tim
(precisely when the distribution function changes more drastically towards the Maxwellic
distribution) and evolves linearly after that.
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The CPU times resulting from the= 10t simulations with both EC and NEC are pre-
sented in Fig. 10. Clearly, although both solvers are within the same order of magnitu
the NEC solver outperforms the EC solver for the particular set of parameters chosen. T
is to be expected because:

1. The EC solver is effectively inverting a dense system. The fact that the EC CPU tir
is within the same order of magnitude as the NEC CPU time indicates that the Jacobian-1
GMRES algorithm is successful in dealing with the dense algebraic system.

2. The NEC method also employs the same powerful iterative matrix-inversion tec
nigues, namely, MG-preconditioned GMRES. In fact, these results prove the effectiven
of these methods in "traditional” approaches of dealing with the implicit integration of th
Fokker—Planck transport equation.

It is of interest to note that the CPU time in both the EC solver and NEC solver scales
O(N?%?). This observation is consistent with profiling results of the code that show th:
the CPU time is dominated, for large meshes, by the calculation of the far-field boundz
conditions of the Rosenbluth potentials (procedure that scal€g B$/?), as discussed in
Ref. [4]).

6. CONCLUSIONS

In this paper, the development of an energy-conservative solver for the multidimensiol
Fokker—Planck equation has been undertaken. The solver uses the energy-conserv
difference scheme developed in Ref. [4] and is based on the coupling of the implicit tin
integration with Newton’s method. Such formulation requires the inversion of dense alg
braic systems, efficiently performed by Jacobian-free Newton—Krylov iterative methoc
These techniques are more efficient than standard techniques and avoid forming and stc
the dense matrix. The efficiency of Krylov methods can be boosted further if adequate p
conditioning schemes are employed. Here, multigrid preconditioning (MG) is used. ResL
indicate that MG is effective for any mesh refinement and any time step and is particula
suited for fine meshes and large time steps.

A direct use of Newton’s method in the implicit time integration does not guarante
convergence unless the initial condition is within Newton'’s radius of convergence. This,
turn, strongly depends on the time step (large time steps correspond to smaller radii).
ensure convergence, a time adaptive scheme has been implemented. Simulations ind
that the scheme is successful for exceptionally large time steps.

Conservation of energy is not exact due to errors at the boundaries of finite veloc
domains. The propagation of the energy error in the energy-conservative solver (EC)
been monitored and compared against that of a non-energy-conservative solver (NEC)
different initial conditions. The comparison shows that EC outperforms NEC by as mu
as an order of magnitude in coarser meshes, but that the advantage is lost in fine mest

A comparison of the CPU times for the EC and NEC solvers shows that the NE
solver is more efficient in fine meshes. Hence, as it stands, the EC solver is the best
ternative to deal with problems in coarse meshes, while the NEC solver is more effect
for fine meshes. However, the fact that the CPU times of both the EC and NEC solve
are within the same order of magnitude indicates that MG-preconditioned Jacobian-f
Newton—Krylov techniques are dealing successfully with the dense algebraic system. Het
future development of energy-conservative Fokker—Planck solvers in multidimensior
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geometries may only be concerned with the design of better energy-conservative differe
schemes.

The development of faster algorithms to calculate the far-field boundary conditions
the Rosenbluth potentials (to provid®(N) scaling), as well as the improvement of the
cancellation of the boundary terms in the difference scheme [4] to provide better enel
conservation values, are still pending issues.
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